
Fixed-Point Toolbox™

User’s Guide

R2012a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Fixed-Point Toolbox™ User’s Guide

© COPYRIGHT 2004–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
June 2004 First printing New for Version 1.0 (Release 14)
October 2004 Online only Version 1.1 (Release 14SP1)
March 2005 Online only Version 1.2 (Release 14SP2)
September 2005 Online only Version 1.3 (Release 14SP3)
October 2005 Second printing Version 1.3
March 2006 Online only Version 1.4 (R2006a)
September 2006 Third printing Version 1.5 (R2006b)
March 2007 Fourth printing Version 2.0 (R2007a)
September 2007 Online only Revised for Version 2.1 (R2007b)
March 2008 Online only Revised for Version 2.2 (R2008a)
October 2008 Online only Revised for Version 2.3 (R2008b)
March 2009 Online only Revised for Version 2.4 (R2009a)
September 2009 Online only Revised for Version 3.0 (R2009b)
March 2010 Online only Revised for Version 3.1 (R2010a)
September 2010 Online only Revised for Version 3.2 (R2010b)
April 2011 Online only Revised for Version 3.3 (R2011a)
September 2011 Online only Revised for Version 3.4 (R2011b)
March 2012 Online only Revised for Version 3.5 (R2012a)

Contents

Getting Started

1
Product Description . 1-2
Key Features . 1-2

System Setup . 1-3
Installation . 1-3
Required Products . 1-3
Related Products . 1-4
Licensing . 1-4

Getting Help . 1-5
Getting Help in This Document . 1-5
Getting Help at the MATLAB Command Line 1-5

Display Settings . 1-7
Displaying the fimath Properties of fi Objects 1-7
Hiding the fimath Properties of fi Objects 1-8
Shortening the numerictype Display of fi Objects 1-10

Demos . 1-11

Fixed-Point Concepts

2
Fixed-Point Data Types . 2-2

Scaling . 2-4

Precision and Range . 2-5
Range . 2-5

v

Precision . 2-6

Arithmetic Operations . 2-10
Modulo Arithmetic . 2-10
Two’s Complement . 2-11
Addition and Subtraction . 2-12
Multiplication . 2-13
Casts . 2-19

fi Objects Compared to C Integer Data Types 2-22
Integer Data Types . 2-22
Unary Conversions . 2-24
Binary Conversions . 2-25
Overflow Handling . 2-28

Working with fi Objects

3
Constructing fi Objects . 3-2
fi Object Syntaxes . 3-2
Examples of Constructing fi Objects 3-3

Casting fi Objects . 3-12
Overwriting by Assignment . 3-12
Ways to Cast with MATLAB Software 3-12

fi Object Properties . 3-17
Data Properties . 3-17
fimath Properties . 3-17
numerictype Properties . 3-19
Setting fi Object Properties . 3-20

fi Object Functions . 3-24

vi Contents

Working with fimath Objects

4
Constructing fimath Objects . 4-2
fimath Object Syntaxes . 4-2
Building fimath Object Constructors in a GUI 4-4

fimath Object Properties . 4-6
Math, Rounding, and Overflow Properties 4-6
Setting fimath Object Properties . 4-7

Using fimath Properties to Perform Fixed-Point
Arithmetic . 4-11
fimath Rules for Fixed-Point Arithmetic 4-11
Binary-Point Arithmetic . 4-13
[Slope Bias] Arithmetic . 4-17

Using fimath to Specify Rounding and Overflow
Modes . 4-20

Using fimath to Share Arithmetic Rules 4-22
Using Default fimath Values to Share Arithmetic Rules . . 4-22
Using Local fimath Objects to Share Arithmetic Rules . . . 4-22

Using fimath ProductMode and SumMode 4-25
Example Setup . 4-25
FullPrecision . 4-26
KeepLSB . 4-27
KeepMSB . 4-28
SpecifyPrecision . 4-29

fimath Object Functions . 4-31

Working with fipref Objects

5
Constructing fipref Objects . 5-2

vii

fipref Object Properties . 5-3
Display, Data Type Override, and Logging Properties 5-3
Setting fipref Object Properties . 5-3

Using fipref Objects to Set Display Preferences 5-5

Using fipref Objects to Set Logging Preferences 5-7
Logging Overflows and Underflows as Warnings 5-7
Accessing Logged Information with Functions 5-9

Using fipref Objects to Set Data Type Override
Preferences . 5-12
Overriding the Data Type of fi Objects 5-12
Using Data Type Override to Help Set Fixed-Point
Scaling . 5-13

fipref Object Functions . 5-15

Working with numerictype Objects

6
Constructing numerictype Objects 6-2
numerictype Object Syntaxes . 6-2
Example: Constructing a numerictype Object with Property
Name and Property Value Pairs 6-3

Example: Copying a numerictype Object 6-4
Example: Building numerictype Object Constructors in a
GUI . 6-5

numerictype Object Properties . 6-7
Data Type and Scaling Properties . 6-7
Setting numerictype Object Properties 6-8

The numerictype Structure . 6-11
Valid Values for numerictype Structure Properties 6-11
Properties That Affect the Slope . 6-13
Stored Integer Value and Real World Value 6-13

viii Contents

Using numerictype Objects to Share Data Type and
Scaling Settings of fi objects . 6-14
Example 1 . 6-14
Example 2 . 6-15

numerictype Object Functions . 6-17

Working with quantizer Objects

7
Constructing quantizer Objects . 7-2

quantizer Object Properties . 7-3

Quantizing Data with quantizer Objects 7-4

Transformations for Quantized Data 7-6

quantizer Object Functions . 7-7

Code Acceleration and Code Generation from
MATLAB for Fixed-Point Algorithms

8
What Are Code Acceleration and Code Generation from
MATLAB? . 8-3

Requirements for Generating MEX Files from MATLAB
Algorithms . 8-4

Functions Supported for Code Acceleration and Code
Generation from MATLAB . 8-5

ix

Workflow for Code Acceleration and Code Generation
from MATLAB for Fixed-Point Algorithms 8-15

Setting Up a Supported C Compiler to Generate MEX
Functions . 8-16

Using fiaccel . 8-17
Speeding Up Fixed-Point Execution with the fiaccel
Function . 8-17

Running fiaccel . 8-17
Generated Files and Locations . 8-18
Using Data Type Override with fiaccel 8-21

Setting Up File Infrastructure and Paths 8-22
Compile Path Search Order . 8-22
When to Use the Code Generation Path 8-22
Add Files to the Code Generation Path 8-23
Adding Folders to Search Paths . 8-23
Naming Conventions . 8-23

PreparingMATLABAlgorithms for CodeGeneration . . 8-26
Debugging Strategies . 8-26
Detecting Errors at Design Time . 8-27
Detecting Errors at Compile Time . 8-27

Setting MEX Compilation Options 8-29
Working with the MEX Compiler Configuration Object . . . 8-29
Modifying Compilation Options at the Command Line
Using Dot Notation . 8-29

MEX Configuration Dialog Box Options 8-30
How fiaccel Resolves Conflicting Options 8-36

Specifying Properties of Primary Function Inputs 8-37
Why You Must Specify Input Properties 8-37
Properties to Specify . 8-37
Rules for Specifying Properties of Primary Inputs 8-40
Methods for Defining Properties of Primary Inputs 8-41
Defining Input Properties by Example at the Command
Line . 8-41

x Contents

Best Practices for Accelerating Fixed-Point MATLAB
Code . 8-49
Recommended Compilation Options for fiaccel 8-49
Using Build Scripts . 8-50
Using the MATLAB Code Analyzer to Check Code
Interactively at Design Time . 8-51

Separating Your Test Bench from Your Function Code . . . 8-52
Preserving Your Code . 8-52
File Naming Conventions . 8-52

Working with Fixed-Point Code Generation Reports . . 8-53
Generating the Code Generation Report 8-53
Opening the Code Generation Report 8-54
Viewing Your MATLAB Code . 8-54
Viewing Variables in the Variables Tab 8-56
See Also . 8-57

Generating MEX Functions from MATLAB Code That
Uses Global Data . 8-58
Workflow Overview . 8-58
Declaring Global Variables . 8-58
Defining Global Data . 8-59
Synchronizing Global Data with MATLAB 8-60
Limitations of Using Global Data . 8-63

Defining Input Properties Programmatically in the
MATLAB File . 8-64
How to Use assert with fiaccel . 8-64
Rules for Using assert Function . 8-69
Example: Specifying Properties of Primary Fixed-Point
Inputs . 8-69

Example: Specifying Class and Size of Scalar Structure . . 8-70
Example: Specifying Class and Size of Structure Array . . 8-71

Controlling Run-Time Checks . 8-73
Types of Run-Time Checks . 8-73
When to Disable Run-Time Checks 8-74
How to Disable Run-Time Checks . 8-74

MATLAB® Coder™ . 8-76

xi

MATLAB Function Block . 8-77
Composing a MATLAB Language Function in a Simulink
Model . 8-77

Using the MATLAB Function Block with Data Type
Override . 8-77

Using Fixed-Point Data Types with the MATLAB Function
Block . 8-79

Example: Implementing a Fixed-Point Direct Form FIR
Using the MATLAB Function Block 8-85

Interoperability with Other Products

9
Using fi Objects with Simulink . 9-2
Reading Fixed-Point Data from the Workspace 9-2
Writing Fixed-Point Data to the Workspace 9-2
Setting the Value and Data Type of Block Parameters . . . 9-6
Logging Fixed-Point Signals . 9-6
Accessing Fixed-Point Block Data During Simulation 9-6

Using fi Objects with DSP System Toolbox 9-7
Reading Fixed-Point Signals from the Workspace 9-7
Writing Fixed-Point Signals to the Workspace 9-7
Using fi Objects with dfilt Objects . 9-11

Using fiaccel, MATLAB® Coder™, or Simulink to
Generate Code . 9-12

Index

xii Contents

1

Getting Started

• “Product Description” on page 1-2

• “System Setup” on page 1-3

• “Getting Help” on page 1-5

• “Display Settings” on page 1-7

• “Demos” on page 1-11

1 Getting Started

Product Description
Design and execute fixed-point algorithms and analyze fixed-point
data

Fixed-Point Toolbox™ provides fixed-point data types and arithmetic in
MATLAB®. The toolbox lets you design fixed-point algorithms using MATLAB
syntax and execute them at compiled C-code speed. You can reuse these
algorithms in Simulink® and pass fixed-point data to and from Simulink
models, facilitating bit-true simulation, implementation, and analysis and
enabling you to generate test sequences for fixed-point software and hardware
verification.

Key Features

• Fixed-point data types in MATLAB with word lengths up to 65535 bits

• Global and local settings for performing fixed-point arithmetic

• Logical and bitwise operators and native integers

• Fixed-point data types usable in both MATLAB and Simulink

• Data logging, data-type override, and other tools for floating-to-fixed-point
conversion

• Accelerated execution of fixed-point algorithms in MATLAB

1-2

System Setup

System Setup

In this section...

“Installation” on page 1-3

“Required Products” on page 1-3

“Related Products” on page 1-4

“Licensing” on page 1-4

Installation
Before you begin working, you need to install the product on your computer.

Installing the Fixed-Point Toolbox Software
Fixed-Point Toolbox software uses the same installation procedure as the
MATLAB toolboxes. See the MATLAB installation documentation for
instructions.

Installing Online Documentation
Installing the documentation is part of the installation process:

• Installation from a DVD — Start the MathWorks® installer. When
prompted, select the Product check boxes for the products you want to
install. The documentation is installed along with the products.

• Installation from a Web download — If you update the Fixed-Point Toolbox
software using a Web download and you want to view the documentation
with the MATLAB Help browser, you must install the documentation on
your hard drive.

Download the files from the Web. Then, start the installer, and select
the Product check boxes for the products you want to install. The
documentation is installed along with the products.

Required Products
The Fixed-Point Toolbox product is part of a family of MathWorks products.
To use the toolbox, you must also have a MATLAB license. For more

1-3

../../../base/install/install_product_page.html

1 Getting Started

information about Fixed-Point Toolbox system and product requirements, see
System Requirements on the MathWorks Web site.

Note You can accelerate Fixed-Point Toolbox software when you have
a compiler installed on your machine. For the current list of supported
compilers, see Supported and Compatible Compilers on the MathWorks Web
site. To setup or modify your compiler configuration, run mex -setup at the
MATLAB command line.

Related Products
MathWorks provides several products that are relevant to the kinds of tasks
you can perform with Fixed-Point Toolbox software.

See Related Products on the MathWorks Web site for more information.

Licensing
You can use fi objects with the DataType property set to double without a
Fixed-Point Toolbox ™ license when you set the fipref LoggingMode property
to off. A Fixed-Point Toolbox license is checked out when you

• Use any fi object with any DataType other than double.

• Create any fi object with the fipref LoggingMode property set to on,
including fi objects with DataType double.

• Load a MAT-file that contains any fi object with the DataType property
set to single, boolean, ScaledDouble, or Fixed.

You can prevent the checkout of a Fixed-Point Toolbox™ license when working
with Fixed-Point Toolbox™ code by setting the fipref DataTypeOverride
property to TrueDoubles.

1-4

http://www.mathworks.com/products/fixed/requirements.html
http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/products/fixed/related.html

Getting Help

Getting Help

In this section...

“Getting Help in This Document” on page 1-5

“Getting Help at the MATLAB Command Line” on page 1-5

Getting Help in This Document
The following chapters discuss the objects of Fixed-Point Toolbox software:

• Chapter 3, “Working with fi Objects”

• Chapter 4, “Working with fimath Objects”

• Chapter 5, “Working with fipref Objects”

• Chapter 6, “Working with numerictype Objects”

• Chapter 7, “Working with quantizer Objects”

To get in-depth information about the properties of these objects, refer to
the Property Reference.

To get in-depth information about the functions of these objects, refer to the
Function Reference.

Getting Help at the MATLAB Command Line
To get command-line help for Fixed-Point Toolbox objects, type

help objectname

For example,

help fi
help fimath
help fipref
help numerictype
help quantizer

To get command-line help for Fixed-Point Toolbox functions, type

1-5

1 Getting Started

help embedded.fi/functionname

For example,

help embedded.fi/abs
help embedded.fi/bitset
help embedded.fi/sqrt

To invoke Help Browser documentation for Fixed-Point Toolbox functions
from the MATLAB command line, type

doc fixedpoint/functionname

For example,

doc fixedpoint/int
doc fixedpoint/add
doc fixedpoint/savefipref
doc fixedpoint/quantize

1-6

Display Settings

Display Settings
In Fixed-Point Toolbox software, the fipref object determines the display
properties of fi objects. Code examples throughout this User’s Guide
generally show fi objects as they appear with the following fipref object
properties:

• NumberDisplay — 'RealWorldValue'

• NumericTypeDisplay — 'full'

• FimathDisplay — 'full'

Setting 'FimathDisplay' to 'full' provides a quick and easy way to
determine if a fi object has a local fimath. When 'FimathDisplay' is set to
'full', MATLAB displays fimath object properties for fi objects with a local
fimath. MATLAB never displays fimath object properties for fi objects that
do not have a local fimath.

Additionally, unless otherwise specified, examples throughout the Fixed-Point
Toolbox documentation use the following configuration of the default fimath:

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

For more information on display settings, refer to Chapter 5, “Working with
fipref Objects”.

Displaying the fimath Properties of fi Objects
To see the output as it appears in most Fixed-Point Toolbox code examples,
set your fipref properties as follows and create two fi objects:

p = fipref('NumberDisplay', 'RealWorldValue',...
'NumericTypeDisplay', 'full', 'FimathDisplay', 'full');
a = fi(pi,'RoundMode', 'floor', 'OverflowMode', 'wrap')
b = fi(pi)

1-7

1 Getting Started

MATLAB returns the following:

a =
3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

b =
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

MATLAB displays fimath object properties in the output of fi object a
because a has a local fimath.

MATLAB does not display any fimath object properties in the output of fi
object b because b has no local fimath.

Hiding the fimath Properties of fi Objects
If you are working with multiple fi objects that have local fimaths, you may
want to turn off the fimath object display:

• NumberDisplay — 'RealWorldValue'

• NumericTypeDisplay — 'full'

1-8

Display Settings

• FimathDisplay — 'none'

For example,

p = fipref('NumberDisplay', 'RealWorldValue',...
'NumericTypeDisplay', 'full', 'FimathDisplay', 'none')

p =

NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'

FimathDisplay: 'none'
LoggingMode: 'Off'

DataTypeOverride: 'ForceOff'

F = fimath('RoundMode', 'floor', 'OverflowMode', 'wrap');
a = fi(pi, F)

a =
3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

Although this setting helps decrease the amount of output produced, it also
makes it impossible to tell from the output whether a fi object has a local
fimath. To do so, you can use the isfimathlocal function. For example,

isfimathlocal(a)

ans =
1

When the isfimathlocal function returns 1, the fi object has a local fimath.
If the function returns 0, the fi object doe not have a local fimath.

1-9

1 Getting Started

Shortening the numerictype Display of fi Objects
To reduce the amount of output even further, you can set the
NumericTypeDisplay to 'short'. For example,

p = fipref('NumberDisplay', 'RealWorldValue',...
'NumericTypeDisplay', 'short', 'FimathDisplay', 'full');

a = fi(pi)

a =
3.1416

s16,13

1-10

Demos

Demos
You can find interactive Fixed-Point Toolbox demos in the MATLAB Help
browser. Fixed-Point Toolbox software includes the following demos:

• Fixed-Point Basics — Demonstrates the basic use of the fixed-point fi
object

• Number Circle — Illustrates the definitions of unsigned and signed two’s
complement integer and fixed-point numbers

• Binary Point Scaling — Explains binary point-only scaling

• Fixed-Point Data Type Override, Min/Max Logging, and Scaling — Steps
through the workflow of using doubles override and min/max logging in the
toolbox to choose appropriate scaling for a fixed-point algorithm

• Fixed-Point C Development — Shows how to use the parameters from a
fixed-point MATLAB program in a fixed-point C program

• Fixed-Point Algorithm Development — Presents the development and
verification of a simple fixed-point algorithm

• Fixed-Point Fast Fourier Transform (FFT) — Provides an example of
converting a textbook Fast Fourier Transform algorithm into fixed-point
MATLAB code and then into fixed-point C code

• Analysis of a Fixed-Point State-Space System with Limit Cycles —
Demonstrates a limit cycle detection routine applied to a state-space system

• Quantization Error — Demonstrates the statistics of the error when signals
are quantized using various rounding methods

• Fixed-Point Lowpass Filtering UsingMATLAB for Code Generation —
Steps through generating a MEX function from MATLAB code, running the
generated MEX function, and displaying the results

• Fixed-Point ATAN2 Calculation — Uses the CORDIC algorithm and
polynomial approximation to perform a fixed-point calculation of the four
quadrant inverse tangent

• Fixed-Point Sine and Cosine Calculation — Uses the CORDIC
approximation functions to compute the sine and cosine of fixed-point data

1-11

1 Getting Started

To access these demos, click the Demos entry for Fixed-Point Toolbox in the
Contents pane of the Help browser, or type demo(’toolbox’,’fixed-point’) at
the MATLAB command line.

1-12

2

Fixed-Point Concepts

• “Fixed-Point Data Types” on page 2-2

• “Scaling” on page 2-4

• “Precision and Range” on page 2-5

• “Arithmetic Operations” on page 2-10

• “fi Objects Compared to C Integer Data Types” on page 2-22

2 Fixed-Point Concepts

Fixed-Point Data Types
In digital hardware, numbers are stored in binary words. A binary word is
a fixed-length sequence of bits (1’s and 0’s). How hardware components or
software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are represented as either fixed-point or floating-point data
types. This chapter discusses many terms and concepts relating to fixed-point
numbers, data types, and mathematics.

A fixed-point data type is characterized by the word length in bits, the position
of the binary point, and whether it is signed or unsigned. The position of
the binary point is the means by which fixed-point values are scaled and
interpreted.

For example, a binary representation of a generalized fixed-point number
(either signed or unsigned) is shown below:

��� � ��� � �� ���� �� �� ��

where

• bi is the i
th binary digit.

• wl is the word length in bits.

• bwl-1 is the location of the most significant, or highest, bit (MSB).

• b0 is the location of the least significant, or lowest, bit (LSB).

• The binary point is shown four places to the left of the LSB. In this
example, therefore, the number is said to have four fractional bits, or a
fraction length of four.

Fixed-point data types can be either signed or unsigned. Signed binary
fixed-point numbers are typically represented in one of three ways:

2-2

Fixed-Point Data Types

• Sign/magnitude

• One’s complement

• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and is the only representation used by Fixed-Point Toolbox
documentation. Refer to “Two’s Complement” on page 2-11 for more
information.

2-3

2 Fixed-Point Concepts

Scaling
Fixed-point numbers can be encoded according to the scheme

real-world value slope integer bias

where the slope can be expressed as

slope slope adjustment factor 2fixed exponent

The integer is sometimes called the stored integer. This is the raw binary
number, in which the binary point assumed to be at the far right of the word.
In Fixed-Point Toolbox documentation, the negative of the fixed exponent is
often referred to as the fraction length.

The slope and bias together represent the scaling of the fixed-point number.
In a number with zero bias, only the slope affects the scaling. A fixed-point
number that is only scaled by binary point position is equivalent to a number
in [Slope Bias] representation that has a bias equal to zero and a slope
adjustment factor equal to one. This is referred to as binary point-only scaling
or power-of-two scaling:

real-world value integerfixed exponent 2

or

real-world value integer-fixed exponent 2

Fixed-Point Toolbox software supports both binary point-only scaling and
[Slope Bias] scaling.

Note For examples of binary point-only scaling, see the Fixed-Point Toolbox
Binary-Point Scaling demo.

2-4

Precision and Range

Precision and Range

In this section...

“Range” on page 2-5

“Precision” on page 2-6

Note You must pay attention to the precision and range of the fixed-point
data types and scalings you choose in order to know whether rounding
methods will be invoked or if overflows or underflows will occur.

Range
The range is the span of numbers that a fixed-point data type and scaling
can represent. The range of representable numbers for a two’s complement

fixed-point number of word length wl , scaling S and bias B is illustrated
below:

�
��

��������	�
���� ��������	�
����

� ���� � �� � � ���� � �� ��

For both signed and unsigned fixed-point numbers of any data type, the
number of different bit patterns is 2wl.

For example, in two’s complement, negative numbers must be represented
as well as zero, so the maximum value is 2wl -1 – 1. Because there is only one
representation for zero, there are an unequal number of positive and negative

numbers. This means there is a representation for − −2 1wl but not for 2 1wl− :

�

��������	�
���� ��������	�
����

��	�����	�	�	���	����	�	��

� ��� � ����

2-5

2 Fixed-Point Concepts

Overflow Handling
Because a fixed-point data type represents numbers within a finite range,
overflows and underflows can occur if the result of an operation is larger or
smaller than the numbers in that range.

Fixed-Point Toolbox software allows you to either saturate or wrap overflows.
Saturation represents positive overflows as the largest positive number
in the range being used, and negative overflows as the largest negative
number in the range being used. Wrapping uses modulo arithmetic to cast an
overflow back into the representable range of the data type. Refer to “Modulo
Arithmetic” on page 2-10 for more information.

When you create a fi object, any overflows are saturated. The OverflowMode
property of the default fimath is saturate. You can log overflows and
underflows by setting the LoggingMode property of the fipref object to on.
Refer to “LoggingMode” for more information.

Precision
The precision of a fixed-point number is the difference between successive
values representable by its data type and scaling, which is equal to the value
of its least significant bit. The value of the least significant bit, and therefore
the precision of the number, is determined by the number of fractional bits.
A fixed-point value can be represented to within half of the precision of its
data type and scaling.

For example, a fixed-point representation with four bits to the right of the
binary point has a precision of 2-4 or 0.0625, which is the value of its least
significant bit. Any number within the range of this data type and scaling can
be represented to within (2-4)/2 or 0.03125, which is half the precision. This is
an example of representing a number with finite precision.

Rounding Methods
When you represent numbers with finite precision, not every number in the
available range can be represented exactly. If a number cannot be represented
exactly by the specified data type and scaling, a rounding method is used to
cast the value to a representable number. Although precision is always lost
in the rounding operation, the cost of the operation and the amount of bias
that is introduced depends on the rounding method itself. To provide you with

2-6

Precision and Range

greater flexibility in the trade-off between cost and bias, Fixed-Point Toolbox
software currently supports the following rounding methods:

• ceil rounds to the closest representable number in the direction of positive
infinity.

• convergent rounds to the closest representable number. In the case of
a tie, convergent rounds to the nearest even number. This is the least
biased rounding method provided by the toolbox.

• fix rounds to the closest representable number in the direction of zero.

• floor, which is equivalent to two’s complement truncation, rounds to the
closest representable number in the direction of negative infinity.

• nearest rounds to the closest representable number. In the case of a tie,
nearest rounds to the closest representable number in the direction of
positive infinity. This rounding method is the default for fi object creation
and fi arithmetic.

• round rounds to the closest representable number. In the case of a tie,
the round method rounds:

- Positive numbers to the closest representable number in the direction
of positive infinity.

- Negative numbers to the closest representable number in the direction
of negative infinity.

Choosing a Rounding Method. Each rounding method has a set of
inherent properties. Depending on the requirements of your design, these
properties could make the rounding method more or less desirable to you. By
knowing the requirements of your design and understanding the properties of
each rounding method, you can determine which is the best fit for your needs.
The most important properties to consider are:

• Cost — Independent of the hardware being used, how much processing
expense does the rounding method require?

- Low — The method requires few processing cycles.

- Moderate — The method requires a moderate number of processing
cycles.

- High — The method requires more processing cycles.

2-7

2 Fixed-Point Concepts

Note The cost estimates provided here are hardware independent. Some
processors have rounding modes built-in, so consider carefully the hardware
you are using before calculating the true cost of each rounding mode.

• Bias — What is the expected value of the rounded values minus the original

values: Ε ̂ −() ?
- Ε ̂ −() < 0 — The rounding method introduces a negative bias.

- Ε ̂ −() = 0 — The rounding method is unbiased.

- Ε ̂ −() > 0 — The rounding method introduces a positive bias.

• Possibility of Overflow — Does the rounding method introduce the
possibility of overflow?

- Yes — The rounded values may exceed the minimum or maximum
representable value.

- No — The rounded values will never exceed the minimum or maximum
representable value.

2-8

Precision and Range

The following table shows a comparison of the different rounding methods
available in both Fixed-Point Toolbox and Simulink Fixed Point™ products.

Fixed-Point Toolbox
Rounding Method

Simulink Fixed
Point Rounding
Mode

Cost Bias Possibility
of Overflow

ceil Ceiling Low Large positive Yes

convergent Convergent High Unbiased Yes

fix Zero Low • Large positive for
negative samples

• Unbiased for
samples with
evenly distributed
positive and
negative values

• Large negative for
positive samples

No

floor Floor Low Large negative No

nearest Nearest Moderate Small positive Yes

round Round High • Small negative for
negative samples

• Unbiased for
samples with
evenly distributed
positive and
negative values

• Small positive for
positive samples

Yes

N/A Simplest
(Simulink Fixed
Point only)

Low Depends on the
operation

No

2-9

2 Fixed-Point Concepts

Arithmetic Operations

In this section...

“Modulo Arithmetic” on page 2-10

“Two’s Complement” on page 2-11

“Addition and Subtraction” on page 2-12

“Multiplication” on page 2-13

“Casts” on page 2-19

Note These sections will help you understand what data type and scaling
choices result in overflows or a loss of precision.

Modulo Arithmetic
Binary math is based on modulo arithmetic. Modulo arithmetic uses only
a finite set of numbers, wrapping the results of any calculations that fall
outside the given set back into the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers
in this system can only be 1 through 12. Therefore, in the “clock” system, 9
plus 9 equals 6. This can be more easily visualized as a number circle:

2-10

Arithmetic Operations

��
�

�

�

�

�
�

�

�

�

��

��
��

�

�

�

�

�
�

�

�

�

��

��

�	 	��
�	�	���	

 	�!
���	�

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic
results that fall outside this range are wrapped “around the circle” to either 0
or 1.

Two’s Complement
Two’s complement is a way to interpret a binary number. In two’s
complement, positive numbers always start with a 0 and negative numbers
always start with a 1. If the leading bit of a two’s complement number is 0,
the value is obtained by calculating the standard binary value of the number.
If the leading bit of a two’s complement number is 1, the value is obtained by
assuming that the leftmost bit is negative, and then calculating the binary
value of the number. For example,

01 0 2 1

11 2 2 2 1 1

0

1 0

= + =

= −() + ()() = − + = −

()

()

To compute the negative of a binary number using two’s complement,

1 Take the one’s complement, or “flip the bits.”

2-11

2 Fixed-Point Concepts

2 Add a 2^(-FL) using binary math, where FL is the fraction length.

3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one’s
complement of the number, or flip the bits:

11010 00101→

Next, add a 1, wrapping all numbers to 0 or 1:

00101
1

00110 6
+

()

Addition and Subtraction
The addition of fixed-point numbers requires that the binary points of the
addends be aligned. The addition is then performed using binary arithmetic
so that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

010010 1
0110 110

011001 010

18 5
6 75
25 25

.

.

.

(.)
(.)
(.)

+

Fixed-point subtraction is equivalent to adding while using the two’s
complement value for any negative values. In subtraction, the addends
must be sign-extended to match each other’s length. For example, consider
subtracting 0110.110 (6.75) from 010010.1 (18.5):

010010 100
0110 110

18 5
6 75

.

.
(.)
(.)−

010010 100
1001 010

1001011 110

18 5
6 75

11 75

.

.

.

(.)
(.)
(.)

+
/

−11

"�#	���
��	���$����

�%�&�	$���������
���	����	�'�������

2-12

Arithmetic Operations

The default fimath has a value of 1 (true) for the CastBeforeSum property.
This casts addends to the sum data type before addition. Therefore, no further
shifting is necessary during the addition to line up the binary points.

If CastBeforeSum has a value of 0 (false), the addends are added with full
precision maintained. After the addition the sum is then quantized.

Multiplication
The multiplication of two’s complement fixed-point numbers is directly
analogous to regular decimal multiplication, with the exception that the
intermediate results must be sign-extended so that their left sides align
before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

Multiplication Data Types
The following diagrams show the data types used for fixed-point multiplication
using Fixed-Point Toolbox software. The diagrams illustrate the differences
between the data types used for real-real, complex-real, and complex-complex
multiplication.

2-13

2 Fixed-Point Concepts

Real-Real Multiplication. The following diagram shows the data types used
by the toolbox in the multiplication of two real numbers. The software returns
the output of this operation in the product data type, which is governed by the
fimath object ProductMode property.

Real-Complex Multiplication. The following diagram shows the data types
used by the toolbox in the multiplication of a real and a complex fixed-point
number. Real-complex and complex-real multiplication are equivalent. The
software returns the output of this operation in the product data type, which
is governed by the fimath object ProductMode property:

Complex-Complex Multiplication. The following diagram shows the
multiplication of two complex fixed-point numbers. Note that the software
returns the output of this operation in the sum data type, which is governed
by the fimath object SumMode property. The intermediate product data type is
determined by the fimath object ProductMode property.

2-14

Arithmetic Operations

When the fimath object CastBeforeSum property is true, the casts to the
sum data type are present after the multipliers in the preceding diagram. In
C code, this is equivalent to

acc=ac;
acc-=bd;

for the subtractor, and

acc=ad;
acc+=bc;

for the adder, where acc is the accumulator. When the CastBeforeSum
property is false, the casts are not present, and the data remains in the
product data type before the subtraction and addition operations.

2-15

2 Fixed-Point Concepts

Multiplication with fimath
In the following examples, let

F = fimath('ProductMode','FullPrecision',...
'SumMode','FullPrecision')
T1 = numerictype('WordLength',24,'FractionLength',20)
T2 = numerictype('WordLength',16,'FractionLength',10)

Real*Real. Notice that the word length and fraction length of the result z
are equal to the sum of the word lengths and fraction lengths, respectively,
of the multiplicands. This is because the fimath SumMode and ProductMode
properties are set to FullPrecision:

P = fipref;
P.FimathDisplay = 'none';
x = fi(5, T1, F)

x =

5

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24

FractionLength: 20

y = fi(10, T2, F)

y =

10

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 10

z = x*y

2-16

Arithmetic Operations

z =

50

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 40

FractionLength: 30

Real*Complex. Notice that the word length and fraction length of the result
z are equal to the sum of the word lengths and fraction lengths, respectively,
of the multiplicands. This is because the fimath SumMode and ProductMode
properties are set to FullPrecision:

x = fi(5,T1,F)

x =

5

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24

FractionLength: 20

y = fi(10+2i,T2,F)

y =

10.0000 + 2.0000i

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 10

2-17

2 Fixed-Point Concepts

z = x*y

z =

50.0000 +10.0000i

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 40

FractionLength: 30

Complex*Complex. Complex-complex multiplication involves an addition
as well as multiplication, so the word length of the full-precision result has
one more bit than the sum of the word lengths of the multiplicands:

x = fi(5+6i,T1,F)

x =

5.0000 + 6.0000i

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24

FractionLength: 20

y = fi(10+2i,T2,F)

y =

10.0000 + 2.0000i

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 10

2-18

Arithmetic Operations

z = x*y

z =

38.0000 +70.0000i

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 41

FractionLength: 30

Casts
The fimath object allows you to specify the data type and scaling of
intermediate sums and products with the SumMode and ProductMode
properties. It is important to keep in mind the ramifications of each cast
when you set the SumMode and ProductMode properties. Depending upon the
data types you select, overflow and/or rounding might occur. The following
two examples demonstrate cases where overflow and rounding can occur.

Note For more examples of casting, see “Casting fi Objects” on page 3-12.

Casting from a Shorter Data Type to a Longer Data Type
Consider the cast of a nonzero number, represented by a 4-bit data type with
two fractional bits, to an 8-bit data type with seven fractional bits:

2-19

2 Fixed-Point Concepts

()��	���	*��	�)�	��
$�	����
�#��	+*����	�**,	�)�)��)	���	%��)
�)�	�)�*�	
� 	-��*��%	���)�	�$$

()�	��
��	%���	���
���	�	%��

()���	����	�*	�)�	�����������
����	�#��	��	������	%��)
�&�	�	�&�

��
$�

�����������

()�	��
$�	����	�
��	��	�)�*���	
�	��	���$)	�)�
����#	�����	��������	�*	�)�	�����������	����	�#��

As the diagram shows, the source bits are shifted up so that the binary point
matches the destination binary point position. The highest source bit does
not fit, so overflow might occur and the result can saturate or wrap. The
empty bits at the low end of the destination data type are padded with either
0’s or 1’s:

• If overflow does not occur, the empty bits are padded with 0’s.

• If wrapping occurs, the empty bits are padded with 0’s.

• If saturation occurs,

- The empty bits of a positive number are padded with 1’s.

- The empty bits of a negative number are padded with 0’s.

You can see that even with a cast from a shorter data type to a longer data
type, overflow can still occur. This can happen when the integer length of
the source data type (in this case two) is longer than the integer length of
the destination data type (in this case one). Similarly, rounding might be
necessary even when casting from a shorter data type to a longer data type, if
the destination data type and scaling has fewer fractional bits than the source.

2-20

Arithmetic Operations

Casting from a Longer Data Type to a Shorter Data Type
Consider the cast of a nonzero number, represented by an 8-bit data type with
seven fractional bits, to a 4-bit data type with two fractional bits:

()��	��	��	���
�	*�	�)��	���
*��	�)�	��
$�.	��	�)�	��
��
�
��	��	����/�'������	��	*���
�)�	�����������	����	�#��

()���	����	*��	�)�	��
$�
��	���	*��	����	�)�	�����������
����	�#�� 	()�	��
��	��	�
����

��
$�

�����������

()�	��
$�	����	�
��	��	�)�*���	��%�	��	���$)	�)�
����#	�����	��������	�*	�)�	�����������	����	�#��

As the diagram shows, the source bits are shifted down so that the binary
point matches the destination binary point position. There is no value for
the highest bit from the source, so sign extension is used to fill the integer
portion of the destination data type. The bottom five bits of the source do not
fit into the fraction length of the destination. Therefore, precision can be
lost as the result is rounded.

In this case, even though the cast is from a longer data type to a shorter
data type, all the integer bits are maintained. Conversely, full precision can
be maintained even if you cast to a shorter data type, as long as the fraction
length of the destination data type is the same length or longer than the
fraction length of the source data type. In that case, however, bits are lost
from the high end of the result and overflow can occur.

The worst case occurs when both the integer length and the fraction length of
the destination data type are shorter than those of the source data type and
scaling. In that case, both overflow and a loss of precision can occur.

2-21

2 Fixed-Point Concepts

fi Objects Compared to C Integer Data Types

In this section...

“Integer Data Types” on page 2-22

“Unary Conversions” on page 2-24

“Binary Conversions” on page 2-25

“Overflow Handling” on page 2-28

Note The sections in this topic compare the fi object with fixed-point data
types and operations in C. In these sections, the information on ANSI C is
adapted from Samuel P. Harbison and Guy L. Steele Jr., C: A Reference
Manual, 3rd ed., Prentice Hall, 1991.

Integer Data Types
This section compares the numerical range of fi integer data types to
the minimum numerical range of C integer data types, assuming a two’s
complement representation.

C Integer Data Types
Many C compilers support a two’s complement representation of signed
integer data types. The following table shows the minimum ranges of C
integer data types using a two’s complement representation. The integer
ranges can be larger than or equal to those shown, but cannot be smaller. The
range of a long must be larger than or equal to the range of an int, which
must be larger than or equal to the range of a short.

In the two’s complement representation, a signed integer with n bits has a

range from − −2 1n to 2 11n− − , inclusive. An unsigned integer with n bits has

a range from 0 to 2 1n − , inclusive. The negative side of the range has one
more value than the positive side, and zero is represented uniquely.

2-22

fi Objects Compared to C Integer Data Types

Integer Type Minimum Maximum

signed char –128 127

unsigned char 0 255

short int –32,768 32,767

unsigned short 0 65,535

int –32,768 32,767

unsigned int 0 65,535

long int –2,147,483,648 2,147,483,647

unsigned long 0 4,294,967,295

fi Integer Data Types
The following table lists the numerical ranges of the integer data types
of the fi object, in particular those equivalent to the C integer data
types. The ranges are large enough to accommodate the two’s complement
representation, which is the only signed binary encoding technique supported
by Fixed-Point Toolbox software.

Constructor Signed Word
Length

Fraction
Length Minimum Maximum Closest ANSI

C Equivalent

fi(x,1,n,0) Yes
n
(2 to
65,535)

0 − −2 1n 2 11n− − N/A

fi(x,0,n,0) No
n
(2 to
65,535)

0 0 2 1n − N/A

fi(x,1,8,0) Yes 8 0 –128 127 signed char

fi(x,0,8,0) No 8 0 0 255 unsigned char

fi(x,1,16,0) Yes 16 0 –32,768 32,767 short int

fi(x,0,16,0) No 16 0 0 65,535
unsigned
short

2-23

2 Fixed-Point Concepts

Constructor Signed Word
Length

Fraction
Length Minimum Maximum Closest ANSI

C Equivalent

fi(x,1,32,0) Yes 32 0 –2,147,483,648 2,147,483,647 long int

fi(x,0,32,0) No 32 0 0 4,294,967,295 unsigned long

Unary Conversions
Unary conversions dictate whether and how a single operand is converted
before an operation is performed. This section discusses unary conversions
in ANSI C and of fi objects.

ANSI C Usual Unary Conversions
Unary conversions in ANSI C are automatically applied to the operands of
the unary !, –, ~, and * operators, and of the binary << and >> operators,
according to the following table:

Original Operand Type ANSI C Conversion

char or short int

unsigned char or unsigned short int or unsigned int1

float float

Array of T Pointer to T

Function returning T Pointer to function returning T

1If type int cannot represent all the values of the original data type without
overflow, the converted type is unsigned int.

2-24

fi Objects Compared to C Integer Data Types

fi Usual Unary Conversions
The following table shows the fi unary conversions:

C Operator fi Equivalent fi Conversion

!x ~x = not(x) Result is logical.

~x bitcmp(x) Result is same numeric type as operand.

*x No equivalent N/A

x<<n bitshift(x,n)
positive n

Result is same numeric type as operand. Round mode
is always floor. Overflow mode is obeyed. 0-valued
bits are shifted in on the right.

x>>n bitshift(x,-n) Result is same numeric type as operand. Round mode
is always floor. Overflow mode is obeyed. 0-valued
bits are shifted in on the left if the operand is unsigned
or signed and positive. 1-valued bits are shifted in on
the left if the operand is signed and negative.

+x +x Result is same numeric type as operand.

-x -x Result is same numeric type as operand. Overflow
mode is obeyed. For example, overflow might occur
when you negate an unsigned fi or the most negative
value of a signed fi.

Binary Conversions
This section describes the conversions that occur when the operands of a
binary operator are different data types.

ANSI C Usual Binary Conversions
In ANSI C, operands of a binary operator must be of the same type. If they
are different, one is converted to the type of the other according to the first
applicable conversion in the following table:

2-25

2 Fixed-Point Concepts

Type of One Operand
Type of Other
Operand ANSI C Conversion

long double Any long double

double Any double

float Any float

unsigned long Any unsigned long

long unsigned long or unsigned
long1

long int long

unsigned int or unsigned unsigned

int int int

1Type long is only used if it can represent all values of type unsigned.

fi Usual Binary Conversions
When one of the operands of a binary operator (+, –, *, .*) is a fi object and
the other is a MATLAB built-in numeric type, then the non-fi operand is
converted to a fi object before the operation is performed, according to the
following table:

Type of One
Operand

Type of Other
Operand

Properties of Other Operand After Conversion to a fi
Object

fi double or
single • Signed = same as the original fi operand

• WordLength = same as the original fi operand

• FractionLength = set to best precision possible

fi int8
• Signed = 1

• WordLength = 8

• FractionLength = 0

2-26

fi Objects Compared to C Integer Data Types

Type of One
Operand

Type of Other
Operand

Properties of Other Operand After Conversion to a fi
Object

fi uint8
• Signed = 0

• WordLength = 8

• FractionLength = 0

fi int16
• Signed = 1

• WordLength = 16

• FractionLength = 0

fi uint16
• Signed = 0

• WordLength = 16

• FractionLength = 0

fi int32
• Signed = 1

• WordLength = 32

• FractionLength = 0

fi uint32
• Signed = 0

• WordLength = 32

• FractionLength = 0

fi int64 • Signed = 1

• WordLength = 64

• FractionLength = 0

fi uint64 • Signed = 0

• WordLength = 64

• FractionLength = 0

2-27

2 Fixed-Point Concepts

Overflow Handling
The following sections compare how ANSI C and Fixed-Point Toolbox software
handle overflows.

ANSI C Overflow Handling
In ANSI C, the result of signed integer operations is whatever value is
produced by the machine instruction used to implement the operation.
Therefore, ANSI C has no rules for handling signed integer overflow.

The results of unsigned integer overflows wrap in ANSI C.

fi Overflow Handling
Addition and multiplication with fi objects yield results that can be exactly
represented by a fi object, up to word lengths of 65,535 bits or the available
memory on your machine. This is not true of division, however, because many
ratios result in infinite binary expressions. You can perform division with fi
objects using the divide function, which requires you to explicitly specify the
numeric type of the result.

The conditions under which a fi object overflows and the results then
produced are determined by the associated fimath object. You can specify
certain overflow characteristics separately for sums (including differences)
and products. Refer to the following table:

fimath Object Properties
Related to Overflow
Handling Property Value Description

'saturate' Overflows are saturated to the maximum
or minimum value in the range.

OverflowMode

'wrap' Overflows wrap using modulo arithmetic if
unsigned, two’s complement wrap if signed.

2-28

fi Objects Compared to C Integer Data Types

fimath Object Properties
Related to Overflow
Handling Property Value Description

ProductMode 'FullPrecision' Full-precision results are kept. Overflow
does not occur. An error is thrown if the
resulting word length is greater than
MaxProductWordLength.

The rules for computing the resulting
product word and fraction lengths are
given in “ProductMode” in the Property
Reference.

'KeepLSB' The least significant bits of the product are
kept. Full precision is kept, but overflow
is possible. This behavior models the C
language integer operations.

The resulting word length is determined
by the ProductWordLength property. If
ProductWordLength is greater than is
necessary for the full-precision product,
then the result is stored in the least
significant bits. If ProductWordLength is
less than is necessary for the full-precision
product, then overflow occurs.

The rule for computing the resulting
product fraction length is given in
“ProductMode” in the Property Reference.

2-29

2 Fixed-Point Concepts

fimath Object Properties
Related to Overflow
Handling Property Value Description

'KeepMSB' The most significant bits of the product are
kept. Overflow is prevented, but precision
may be lost.

The resulting word length is determined
by the ProductWordLength property. If
ProductWordLength is greater than is
necessary for the full-precision product,
then the result is stored in the most
significant bits. If ProductWordLength is
less than is necessary for the full-precision
product, then rounding occurs.

The rule for computing the resulting
product fraction length is given in
“ProductMode” in the Property Reference.

'SpecifyPrecision' You can specify both the word length and
the fraction length of the resulting product.

ProductWordLength Positive integer The word length of product results when
ProductMode is 'KeepLSB', 'KeepMSB', or
'SpecifyPrecision'.

MaxProductWordLength Positive integer The maximum product word length allowed
when ProductMode is 'FullPrecision'.
The default is 128 bits. The maximum is
65,535 bits. This property can help ensure
that your simulation does not exceed your
hardware requirements.

ProductFractionLength Integer The fraction length of product results when
ProductMode is 'Specify Precision'.

2-30

fi Objects Compared to C Integer Data Types

fimath Object Properties
Related to Overflow
Handling Property Value Description

SumMode 'FullPrecision' Full-precision results are kept. Overflow
does not occur. An error is thrown if the
resulting word length is greater than
MaxSumWordLength.

The rules for computing the resulting sum
word and fraction lengths are given in
“SumMode” in the Property Reference.

'KeepLSB' The least significant bits of the sum are
kept. Full precision is kept, but overflow
is possible. This behavior models the C
language integer operations.

The resulting word length is determined
by the SumWordLength property. If
SumWordLength is greater than is necessary
for the full-precision sum, then the result
is stored in the least significant bits. If
SumWordLength is less than is necessary
for the full-precision sum, then overflow
occurs.

The rule for computing the resulting sum
fraction length is given in “SumMode” in
the Property Reference.

'KeepMSB' The most significant bits of the sum are
kept. Overflow is prevented, but precision
may be lost.

The resulting word length is determined
by the SumWordLength property. If
SumWordLength is greater than is necessary
for the full-precision sum, then the result
is stored in the most significant bits. If
SumWordLength is less than is necessary
for the full-precision sum, then rounding
occurs.

2-31

2 Fixed-Point Concepts

fimath Object Properties
Related to Overflow
Handling Property Value Description

The rule for computing the resulting sum
fraction length is given in “SumMode” in
the Property Reference.

'SpecifyPrecision' You can specify both the word length and
the fraction length of the resulting sum.

SumWordLength Positive integer The word length of sum results when
SumMode is 'KeepLSB', 'KeepMSB', or
'SpecifyPrecision'.

MaxSumWordLength Positive integer The maximum sum word length allowed
when SumMode is 'FullPrecision'. The
default is 128 bits. The maximum is 65,535
bits. This property can help ensure that
your simulation does not exceed your
hardware requirements.

SumFractionLength Integer The fraction length of sum results when
SumMode is 'SpecifyPrecision'.

2-32

3

Working with fi Objects

• “Constructing fi Objects” on page 3-2

• “Casting fi Objects” on page 3-12

• “fi Object Properties” on page 3-17

• “fi Object Functions” on page 3-24

3 Working with fi Objects

Constructing fi Objects

In this section...

“fi Object Syntaxes” on page 3-2

“Examples of Constructing fi Objects” on page 3-3

fi Object Syntaxes
You can create fi objects using Fixed-Point Toolbox software in any of the
following ways:

• You can use the fi constructor function to create a new fi object.

• You can use the sfi constructor function to create a new signed fi object.

• You can use the ufi constructor function to create a new unsigned fi object.

• You can use any of the fi constructor functions to copy an existing fi object.

To get started, type

a = fi(0)

to create a fi object with the default data type and a value of 0.

a =

0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

This constructor syntax creates a signed fi object with a value of 0, word
length of 16 bits, and fraction length of 15 bits. Because you did not specify
any fimath object properties in the fi constructor, the resulting fi object
a has no local fimath.

3-2

Constructing fi Objects

To see all of the fi, sfi, and ufi constructor syntaxes, refer to the respective
reference pages.

Note For information on the display format of fi objects, refer to “Display
Settings” on page 1-7.

Examples of Constructing fi Objects
The following examples show you several different ways to construct fi
objects. For other, more basic examples of constructing fi objects, see the
Examples section of the following constructor function reference pages:

• fi

• sfi

• ufi

Note The fi constructor creates the fi object using a RoundMode of Nearest
and an OverflowMode of Saturate. If you construct a fi from floating-point
values, the default RoundMode and OverflowMode property settings are not
used.

Constructing a fi Object with Property Name/Property Value
Pairs
You can use property name/property value pairs to set fi and fimath object
properties when you create the fi object:

a = fi(pi, 'roundmode', 'floor', 'overflowmode', 'wrap')

a =

3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

3-3

3 Working with fi Objects

FractionLength: 13

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

You do not have to specify every fimath object property in the fi constructor.
The fi object uses default values for all unspecified fimath object properties.

• If you specify at least one fimath object property in the fi constructor, the
fi object will have a local fimath object. The fi object uses default values
for the remaining unspecified fimath object properties.

• If you do not specify any fimath object properties in the fi object
constructor, the fi object uses default fimath values.

Constructing a fi Object Using a numerictype Object
You can use a numerictype object to define a fi object:

T = numerictype

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

a = fi(pi, T)

a =

1.0000

DataTypeMode: Fixed-point: binary point scaling

3-4

Constructing fi Objects

Signedness: Signed
WordLength: 16

FractionLength: 15

You can also use a fimath object with a numerictype object to define a fi
object:

F = fimath('RoundMode', 'nearest',...
'OverflowMode', 'saturate',...
'ProductMode','FullPrecision',...
'MaxProductWordLength', 128,...
'SumMode','FullPrecision',...
'MaxSumWordLength', 128)

F =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

a = fi(pi, T, F)

a =

1.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

3-5

3 Working with fi Objects

MaxSumWordLength: 128

Note The syntax a = fi(pi,T,F) is equivalent to a = fi(pi,F,T). You
can use both statements to define a fi object using a fimath object and a
numerictype object.

Constructing a fi Object Using a fimath Object
You can create a fi object using a specific fimath object. When you do so, a
local fimath object is assigned to the fi object you create. If you do not specify
any numerictype object properties, the word length of the fi object defaults
to 16 bits. The fraction length is determined by best precision scaling:

F = fimath('RoundMode', 'nearest',...
'OverflowMode', 'saturate',...
'ProductMode','FullPrecision',...
'MaxProductWordLength', 128,...
'SumMode','FullPrecision',...
'MaxSumWordLength', 128)

F =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

F.OverflowMode = 'wrap'

F =

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

3-6

Constructing fi Objects

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

a = fi(pi, F)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

You can also create fi objects using a fimath object while specifying various
numerictype properties at creation time:

b = fi(pi, 0, F)

b =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16

FractionLength: 14

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128

3-7

3 Working with fi Objects

SumMode: FullPrecision
MaxSumWordLength: 128

c = fi(pi, 0, 8, F)

c =

3.1406

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8

FractionLength: 6

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

d = fi(pi, 0, 8, 6, F)

d =

3.1406

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8

FractionLength: 6

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

3-8

Constructing fi Objects

Building fi Object Constructors in a GUI
When you are working with files in MATLAB, you can build your fi object
constructors using the Insert fi Constructor dialog box. After specifying
the value and properties of the fi object in the dialog box, you can insert the
prepopulated fi object constructor string at a specific location in your file.

For example, to create a signed fi object with a value of pi, a word length of
16 bits and a fraction length of 13 bits, perform the following steps:

1 Open the Insert fi Constructor dialog box by selecting
Tools > Fixed-Point Toolbox > Insert fi Constructor from the editor
menu.

2 Use the edit boxes and drop-down menus to specify the following properties
of the fi object:

• Value = pi

• Data type mode = Fixed-point: binary point scaling

• Signedness = Signed

• Word length = 16

• Fraction length = 13

3-9

3 Working with fi Objects

3 To insert the fi object constructor string in your file, place your cursor at
the desired location in the file, and click OK on the Insert fi Constructor
dialog box. Clicking OK closes the Insert fi Constructor dialog box and
automatically populates the fi object constructor string in your file:

Determining Property Precedence
The value of a property is taken from the last time it is set. For example,
create a numerictype object with a value of true for the Signed property
and a fraction length of 14:

T = numerictype('Signed', true, 'FractionLength', 14)

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 14

Now, create the following fi object in which you specify the numerictype
property after the Signed property, so that the resulting fi object is signed:

a = fi(pi,'Signed',false,'numerictype',T)

a =

1.9999

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 14

Contrast the fi object in this code sample with the fi object in the following
code sample. The numerictype property in the following code sample is
specified before the Signed property, so the resulting fi object is unsigned:

3-10

Constructing fi Objects

b = fi(pi,'numerictype',T,'Signed',false)

b =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16

FractionLength: 14

Copying a fi Object
To copy a fi object, simply use assignment, as in the following example:

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13
b = a

b =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

3-11

3 Working with fi Objects

Casting fi Objects

In this section...

“Overwriting by Assignment” on page 3-12

“Ways to Cast with MATLAB Software” on page 3-12

Overwriting by Assignment
Because MATLAB software does not have type declarations, an assignment
like A = B replaces the type and content of A with the type and content of B. If
A does not exist at the time of the assignment, MATLAB creates the variable
A and assigns it the same type and value as B. Such assignment happens
with all types in MATLAB—objects and built-in types alike—including fi,
double, single, int8, uint8, int16, etc.

For example, the following code overwrites the value and int8 type of A with
the value and int16 type of B:

A = int8(0);
B = int16(32767);
A = B

A =

32767

class(A)

ans =

int16

Ways to Cast with MATLAB Software
You may find it useful to cast data into another type—for example, when you
are casting data from an accumulator to memory. There are several ways
to cast data in MATLAB. The following sections provide examples of three
different methods:

3-12

Casting fi Objects

• Casting by Subscripted Assignment

• Casting by Conversion Function

• Casting with the Fixed-Point Toolbox reinterpretcast Function

Casting by Subscripted Assignment
The following subscripted assignment statement retains the type of A and
saturates the value of B to an int8:

A = int8(0);
B = int16(32767);
A(:) = B

A =

127

class(A)

ans =

int8

The same is true for fi objects:

fipref('NumericTypeDisplay', 'short');
A = fi(0, true, 8, 0);
B = fi(32767, true, 16, 0);
A(:) = B

A =

127
s8,0

Note For more information on subscripted assignments, see the subsasgn
function.

3-13

3 Working with fi Objects

Casting by Conversion Function
You can convert from one data type to another by using a conversion function.
In this example, A does not have to be predefined because it is overwritten.

B = int16(32767);
A = int8(B)

A =

127

class(A)

ans =

int8

The same is true for fi objects:

B = fi(32767, true, 16, 0)
A = fi(B, 1, 8, 0)

B =

32767
s16,0

A =

127
s8,0

Using a numerictype Object in the fi Conversion Function. Often a
specific numerictype is used in many places, and it is convenient to predefine
numerictype objects for use in the conversion functions. Predefining these
objects is a good practice because it also puts the data type specification in
one place.

T8 = numerictype(1,8,0)

T8 =

3-14

Casting fi Objects

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: 0

T16 = numerictype(1,16,0)

T16 =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 0

B = fi(32767,T16)

B =

32767
s16,0

A = fi(B, T8)

A =

127
s8,0

Casting with the reinterpretcast Function
You can convert fixed-point and built-in data types without changing the
underlying data. The Fixed-Point Toolbox reinterpretcast function
performs this type of conversion.

In the following example, B is an unsigned fi object with a word length of 8
bits and a fraction length of 5 bits. The reinterpretcast function converts B
into a signed fi object A with a word length of 8 bits and a fraction length of 1

3-15

3 Working with fi Objects

bit. The real-world values of A and B differ, but their binary representations
are the same.

B = fi([pi/4 1 pi/2 4], false, 8, 5)
T = numerictype(true, 8, 1);
A = reinterpretcast(B, T)

B =

0.7813 1.0000 1.5625 4.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8

FractionLength: 5

A =

12.5000 16.0000 25.0000 -64.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: 1

To verify that the underlying data has not changed, compare the binary
representations of A and B:

binary_B = bin(B)
binary_A = bin(A)

binary_A =

00011001 00100000 00110010 10000000

binary_B =

00011001 00100000 00110010 10000000

3-16

fi Object Properties

fi Object Properties

In this section...

“Data Properties” on page 3-17

“fimath Properties” on page 3-17

“numerictype Properties” on page 3-19

“Setting fi Object Properties” on page 3-20

Data Properties
The data properties of a fi object are always writable.

• bin — Stored integer value of a fi object in binary

• data — Numerical real-world value of a fi object

• dec — Stored integer value of a fi object in decimal

• double — Real-world value of a fi object, stored as a MATLAB double
data type

• hex— Stored integer value of a fi object in hexadecimal

• oct — Stored integer value of a fi object in octal

To learn more about these properties, see “fi Object Properties” in the
Fixed-Point Toolbox Reference.

fimath Properties
In general, the fimath properties associated with fi objects depend on how
you create the fi object:

• When you specify one or more fimath object properties in the fi
constructor, the resulting fi object has a local fimath object.

• When you do not specify any fimath object properties in the fi constructor,
the resulting fi object has no local fimath.

3-17

3 Working with fi Objects

To determine whether a fi object has a local fimath object, use the
isfimathlocal function.

The fimath properties associated with fi objects determine how fixed-point
arithmetic is performed. These fimath properties can come from a local
fimath object or from default fimath property values. To learn more about
fimath objects in fixed-point arithmetic, see “fimath Rules for Fixed-Point
Arithmetic” on page 4-11.

The following fimath properties are, by transitivity, also properties of the fi
object. You can set these properties for individual fi objects. The following
fimath properties are always writable.

• CastBeforeSum— Whether both operands are cast to the sum data type
before addition

Note This property is hidden when the SumMode is set to FullPrecision.

• MaxProductWordLength—Maximum allowable word length for the product
data type

• MaxSumWordLength — Maximum allowable word length for the sum data
type

• OverflowMode — Overflow mode

• ProductBias — Bias of the product data type

• ProductFixedExponent— Fixed exponent of the product data type

• ProductFractionLength — Fraction length, in bits, of the product data
type

• ProductMode— Defines how the product data type is determined

• ProductSlope — Slope of the product data type

• ProductSlopeAdjustmentFactor— Slope adjustment factor of the product
data type

• ProductWordLength—Word length, in bits, of the product data type

• RoundMode — Rounding mode

3-18

fi Object Properties

• SumBias — Bias of the sum data type

• SumFixedExponent— Fixed exponent of the sum data type

• SumFractionLength— Fraction length, in bits, of the sum data type

• SumMode— Defines how the sum data type is determined

• SumSlope — Slope of the sum data type

• SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data
type

• SumWordLength— The word length, in bits, of the sum data type

To learn more about these properties, see the “fimath Object Properties” in
the Fixed-Point Toolbox Reference.

numerictype Properties
When you create a fi object, a numerictype object is also automatically
created as a property of the fi object:

numerictype— Object containing all the data type information of a fi object,
Simulink signal or model parameter

The following numerictype properties are, by transitivity, also properties of a
fi object. The following properties of the numerictype object become read
only after you create the fi object. However, you can create a copy of a fi
object with new values specified for the numerictype properties:

• Bias — Bias of a fi object

• DataType— Data type category associated with a fi object

• DataTypeMode— Data type and scaling mode of a fi object

• FixedExponent— Fixed-point exponent associated with a fi object

• FractionLength — Fraction length of the stored integer value of a fi
object in bits

• Scaling — Fixed-point scaling mode of a fi object

• Signed— Whether a fi object is signed or unsigned

3-19

3 Working with fi Objects

• Signedness— Whether a fi object is signed or unsigned

Note numerictype objects can have a Signedness of Auto, but all fi
objects must be Signed or Unsigned. If a numerictype object with Auto
Signedness is used to create a fi object, the Signedness property of the fi
object automatically defaults to Signed.

• Slope — Slope associated with a fi object

• SlopeAdjustmentFactor— Slope adjustment associated with a fi object

• WordLength—Word length of the stored integer value of a fi object in bits

For further details on these properties, see the Property Reference.

There are two ways to specify properties for fi objects in Fixed-Point Toolbox
software. Refer to the following sections:

• “Setting Fixed-Point Properties at Object Creation” on page 3-20

• “Using Direct Property Referencing with fi” on page 3-21

Setting fi Object Properties
You can set fi object properties in two ways:

• Setting the properties when you create the object

• Using direct property referencing

Setting Fixed-Point Properties at Object Creation
You can set properties of fi objects at the time of object creation by including
properties after the arguments of the fi constructor function. For example, to
set the overflow mode to wrap and the rounding mode to convergent,

a = fi(pi, 'OverflowMode', 'wrap', 'RoundMode', 'convergent')

a =

3.1416

3-20

fi Object Properties

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

RoundMode: convergent
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

Using Direct Property Referencing with fi
You can reference directly into a property for setting or retrieving fi object
property values using MATLAB structure-like referencing. You do so by using
a period to index into a property by name.

For example, to get the WordLength of a,

a.WordLength

ans =

16

To set the OverflowMode of a,

a.OverflowMode = 'wrap'

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

3-21

3 Working with fi Objects

FractionLength: 13

RoundMode: convergent
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

If you have a fi object b with a local fimath object, you can remove the local
fimath object and force b to use default fimath values:

b = fi(pi, 1, 'RoundMode', 'Floor')

b =
3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

RoundMode: floor
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

b.fimath = []

b =
3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

isfimathlocal(b)

3-22

fi Object Properties

ans =
0

3-23

3 Working with fi Objects

fi Object Functions
You can learn about the functions associated with fi objects in the Function
Reference.

The following data-access functions can be also used to get the data in a fi
object using dot notation.

• bin

• data

• dec

• double

• hex

• storedInteger

• storedIntegerToDouble

• oct

For example,

a = fi(pi);
n = storedInteger(a)

n =

25736

ans =

25736

h = hex(a)

h =

3-24

fi Object Functions

6488

a.hex

ans =

6488

3-25

3 Working with fi Objects

3-26

4

Working with fimath
Objects

• “Constructing fimath Objects” on page 4-2

• “fimath Object Properties” on page 4-6

• “Using fimath Properties to Perform Fixed-Point Arithmetic” on page 4-11

• “Using fimath to Specify Rounding and Overflow Modes” on page 4-20

• “Using fimath to Share Arithmetic Rules” on page 4-22

• “Using fimath ProductMode and SumMode” on page 4-25

• “fimath Object Functions” on page 4-31

4 Working with fimath Objects

Constructing fimath Objects

In this section...

“fimath Object Syntaxes” on page 4-2

“Building fimath Object Constructors in a GUI” on page 4-4

fimath Object Syntaxes
The arithmetic attributes of a fi object are defined by a local fimath object,
which is attached to that fi object. If a fi object has no local fimath, the
following default fimath values are used:

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

You can create fimath objects in Fixed-Point Toolbox software in one of two
ways:

• You can use the fimath constructor function to create new fimath objects.

• You can use the fimath constructor function to copy an existing fimath
object.

To get started, type

F = fimath

to create a fimath object.

F =

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

4-2

Constructing fimath Objects

MaxSumWordLength: 128

To copy a fimath object, simply use assignment as in the following example:

F = fimath;
G = F;
isequal(F,G)

ans =

1

4-3

4 Working with fimath Objects

The syntax

F = fimath(...'PropertyName',PropertyValue...)

allows you to set properties for a fimath object at object creation with
property name/property value pairs. Refer to “Setting fimath Properties at
Object Creation” on page 4-7.

Building fimath Object Constructors in a GUI
When you are working with files in MATLAB, you can build your fimath
object constructors using the Insert fimath Constructor dialog box. After
specifying the properties of the fimath object in the dialog box, you can insert
the prepopulated fimath object constructor string at a specific location in
your file.

For example, to create a fimath object that uses convergent rounding and
wraps on overflow, perform the following steps:

1 Open the Insert fimath Constructor dialog box by selecting
Tools > Fixed-Point Toolbox > Insert fimath Constructor from the
editor menu.

2 Use the edit boxes and drop-down menus to specify the following properties
of the fimath object:

• Round mode = Floor

• Overflow mode = Wrap

• Product mode = FullPrecision

• Maximum product word length = 128

• Sum mode = FullPrecision

• Maximum sum word length = 128

• Cast before sum = Checked

4-4

Constructing fimath Objects

3 To insert the fimath object constructor string in your file, place your
cursor at the desired location in the file. Then click OK on the Insert
fimath Constructor dialog box. Clicking OK closes the Insert fimath
Constructor dialog box and automatically populates the fimath object
constructor string in your file:

4-5

4 Working with fimath Objects

fimath Object Properties

In this section...

“Math, Rounding, and Overflow Properties” on page 4-6

“Setting fimath Object Properties” on page 4-7

Math, Rounding, and Overflow Properties
You can always write to the following properties of fimath objects:

Property Description

CastBeforeSum Whether both operands are cast to
the sum data type before addition

MaxProductWordLength Maximum allowable word length for
the product data type

MaxSumWordLength Maximum allowable word length for
the sum data type

OverflowMode Overflow-handling mode

ProductBias Bias of the product data type

ProductFixedExponent Fixed exponent of the product data
type

ProductFractionLength Fraction length, in bits, of the
product data type

ProductMode Defines how the product data type
is determined

ProductSlope Slope of the product data type

ProductSlopeAdjustmentFactor Slope adjustment factor of the
product data type

ProductWordLength Word length, in bits, of the product
data type

RoundMode Rounding mode

4-6

fimath Object Properties

Property Description

SumBias Bias of the sum data type

SumFixedExponent Fixed exponent of the sum data type

SumFractionLength Fraction length, in bits, of the sum
data type

SumMode Defines how the sum data type is
determined

SumSlope Slope of the sum data type

SumSlopeAdjustmentFactor Slope adjustment factor of the sum
data type

SumWordLength Word length, in bits, of the sum data
type

For details about these properties, refer to the Property Reference. To learn
how to specify properties for fimath objects in Fixed-Point Toolbox software,
refer to “Setting fimath Object Properties” on page 4-7.

Setting fimath Object Properties

• “Setting fimath Properties at Object Creation” on page 4-7

• “Using Direct Property Referencing with fimath” on page 4-8

• “Setting fimath Properties in the Model Explorer” on page 4-9

Setting fimath Properties at Object Creation
You can set properties of fimath objects at the time of object creation by
including properties after the arguments of the fimath constructor function.

For example, to set the overflow mode to saturate and the rounding mode to
convergent,

F = fimath('OverflowMode','saturate','RoundMode','convergent')

F =

4-7

4 Working with fimath Objects

RoundMode: convergent
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

Using Direct Property Referencing with fimath
You can reference directly into a property for setting or retrieving fimath
object property values using MATLAB structure-like referencing. You do so
by using a period to index into a property by name.

For example, to get the RoundMode of F,

F.RoundMode

ans =

convergent

To set the OverflowMode of F,

F.OverflowMode = 'wrap'

F =

RoundMode: convergent
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

4-8

fimath Object Properties

Setting fimath Properties in the Model Explorer
You can view and change the properties for any fimath object defined in
the MATLAB workspace in the Model Explorer. Open the Model Explorer
by selecting View > Model Explorer in any Simulink model, or by typing
daexplr at the MATLAB command line.

The following figure shows the Model Explorer when you define the following
fimath objects in the MATLAB workspace:

F = fimath

F =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

G = fimath('OverflowMode','wrap')

G =

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

4-9

4 Working with fimath Objects

Select the Base Workspace node in theModel Hierarchy pane to view the
current objects in the Contents pane. When you select a fimath object in the
Contents pane, you can view and change its properties in the Dialog pane.

For more information on working with the Model Explorer, see the following
sections of the Fixed-Point Toolbox documentation:

• “Specifying Fixed-Point Parameters in the Model Explorer” on page 8-79

• “Sharing Models with Fixed-Point MATLAB Function Blocks” on page 8-83

4-10

Using fimath Properties to Perform Fixed-Point Arithmetic

Using fimath Properties to Perform Fixed-Point Arithmetic

In this section...

“fimath Rules for Fixed-Point Arithmetic” on page 4-11

“Binary-Point Arithmetic” on page 4-13

“[Slope Bias] Arithmetic” on page 4-17

fimath Rules for Fixed-Point Arithmetic
fimath properties define the rules for performing arithmetic operations on fi
objects. The fimath properties that govern fixed-point arithmetic operations
can come from a local fimath object or the fimath default values.

To determine whether a fi object has a local fimath object, use the
isfimathlocal function.

The following sections discuss how fi objects with local fimath objects
interact with fi objects without local fimath.

Binary Operations
In binary fixed-point operations such as c = a + b, the following rules apply:

• If both a and b have no local fimath, the operation uses default fimath
values to perform the fixed-point arithmetic. The output fi object c also
has no local fimath.

• If either a or b has a local fimath object, the operation uses that fimath
object to perform the fixed-point arithmetic. The output fi object c has the
same local fimath object as the input.

Unary Operations
In unary fixed-point operations such as b = abs(a), the following rules apply:

• If a has no local fimath, the operation uses default fimath values to perform
the fixed-point arithmetic. The output fi object b has no local fimath.

4-11

4 Working with fimath Objects

• If a has a local fimath object, the operation uses that fimath object to
perform the fixed-point arithmetic. The output fi object b has the same
local fimath object as the input a.

When you specify a fimath object in the function call of a unary fixed-point
operation, the operation uses the fimath object you specify to perform the
fixed-point arithmetic. For example, when you use a syntax such as b =
abs(a,F) or b = sqrt(a,F), the abs and sqrt operations use the fimath
object F to compute intermediate quantities. The output fi object b always
has no local fimath.

Concatenation Operations
In fixed-point concatenation operations such as c = [a b], c = [a;b] and
c = bitconcat(a,b), the following rule applies:

• The fimath properties of the left-most fi object in the operation determine
the fimath properties of the output fi object c.

For example, consider the following scenarios for the operation d = [a b c]:

• If a is a fi object with no local fimath, the output fi object d also has no
local fimath.

• If a has a local fimath object, the output fi object d has the same local
fimath object.

• If a is not a fi object, the output fi object d inherits the fimath properties
of the next left-most fi object. For example, if b is a fi object with a local
fimath object, the output fi object d has the same local fimath object as
the input fi object b.

fimath Object Operations: add, mpy, sub
The output of the fimath object operations add, mpy, and sub always have no
local fimath. The operations use the fimath object you specify in the function
call, but the output fi object never has a local fimath object.

MATLAB Function Block Operations
Fixed-point operations performed with the MATLAB Function block use the
same rules as fixed-point operations performed in MATLAB.

4-12

Using fimath Properties to Perform Fixed-Point Arithmetic

All input signals to the MATLAB Function block that you treat as fi objects
associate with whatever you specify for the MATLAB Function block
fimath parameter. When you set this parameter to Same as MATLAB, your
fi objects do not have local fimath. When you set the MATLAB Function
block fimath parameter to Specify other, you can define your own set
of fimath properties for all fi objects in the MATLAB Function block to
associate with. You can choose to treat only fixed-point input signals as fi
objects or both fixed-point and integer input signals as fi objects. See “Using
fimath Objects in MATLAB Function Blocks” on page 8-81.

Binary-Point Arithmetic
The fimath object encapsulates the math properties of Fixed-Point Toolbox
software.

fi objects only have a local fimath object when you explicitly specify fimath
properties in the fi constructor. When you use the sfi or ufi constructor or
do not specify any fimath properties in the fi constructor, the resulting fi
object does not have any local fimath and uses default fimath values.

a = fi(pi)

a =
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

a.fimath
isfimathlocal(a)

ans =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128

4-13

4 Working with fimath Objects

SumMode: FullPrecision
MaxSumWordLength: 128

ans =
0

To perform arithmetic with +, -, .*, or * on two fi operands with local fimath
objects, the local fimath objects must be identical. If one of the fi operands
does not have a local fimath, the fimath properties of the two operands need
not be identical. See “fimath Rules for Fixed-Point Arithmetic” on page 4-11
for more information.

a = fi(pi);
b = fi(8);
isequal(a.fimath, b.fimath)

ans =

1

a + b

ans =

11.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 19

FractionLength: 13

To perform arithmetic with +, -, .*, or *, two fi operands must also have the
same data type. For example, you can perform addition on two fi objects
with data type double, but not on an object with data type double and one
with data type single:

a = fi(3, 'DataType', 'double')

a =

4-14

Using fimath Properties to Perform Fixed-Point Arithmetic

3

DataTypeMode: Double

b = fi(27, 'DataType', 'double')

b =

27

DataTypeMode: Double

a + b

ans =

30

DataTypeMode: Double

c = fi(12, 'DataType', 'single')

c =

12

DataTypeMode: Single

a + c
??? Math operations are not allowed on FI objects with

different data types.

Fixed-point fi object operands do not have to have the same scaling. You can
perform binary math operations on a fi object with a fixed-point data type
and a fi object with a scaled doubles data type. In this sense, the scaled
double data type acts as a fixed-point data type:

a = fi(pi)

a =

4-15

4 Working with fimath Objects

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

b = fi(magic(2), ...
'DataTypeMode', 'Scaled double: binary point scaling')

b =

1 3
4 2

DataTypeMode: Scaled double: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 12

a + b

ans =

4.1416 6.1416
7.1416 5.1416

DataTypeMode: Scaled double: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 13

Use the divide function to perform division with doubles, singles, or binary
point-only scaling fi objects.

4-16

Using fimath Properties to Perform Fixed-Point Arithmetic

[Slope Bias] Arithmetic
Fixed-Point Toolbox software supports fixed-point arithmetic using the
local fimath object or default fimath for all binary point-only signals. The
toolbox also supports arithmetic for [Slope Bias] signals with the following
restrictions:

• [Slope Bias] signals must be real.

• You must set the SumMode and ProductMode properties of the governing
fimath to 'SpecifyPrecision' for sum and multiply operations,
respectively.

• You must set the CastBeforeSum property of the governing fimath to
'true'.

• Fixed-Point Toolbox does not support the divide function for [Slope Bias]
signals.

f = fimath('SumMode', 'SpecifyPrecision', ...
'SumFractionLength', 16)

f =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: SpecifyPrecision

SumWordLength: 32
SumFractionLength: 16

CastBeforeSum: true

a = fi(pi, 'fimath', f)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

4-17

4 Working with fimath Objects

WordLength: 16
FractionLength: 13

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: SpecifyPrecision

SumWordLength: 32
SumFractionLength: 16

CastBeforeSum: true

b = fi(22, true, 16, 2^-8, 3, 'fimath', f)

b =

22

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 0.00390625
Bias: 3

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: SpecifyPrecision

SumWordLength: 32
SumFractionLength: 16

CastBeforeSum: true

a + b

ans =

25.1416

DataTypeMode: Fixed-point: binary point scaling

4-18

Using fimath Properties to Perform Fixed-Point Arithmetic

Signedness: Signed
WordLength: 32

FractionLength: 16

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: SpecifyPrecision

SumWordLength: 32
SumFractionLength: 16

CastBeforeSum: true

Setting the SumMode and ProductMode properties to SpecifyPrecision are
mutually exclusive except when performing the * operation between matrices.
In this case, you must set both the SumMode and ProductMode properties to
SpecifyPrecision for [Slope Bias] signals. Doing so is necessary because the
* operation performs both sum and multiply operations to calculate the result.

4-19

4 Working with fimath Objects

Using fimath to Specify Rounding and Overflow Modes
Only rounding and overflow modes set prior to an operation with fi objects
affect the outcome of those operations. Once you create a fi object in
MATLAB, changing its rounding or overflow mode does not affect its value.
For example, consider the fi objects a and b:

p = fipref('NumberDisplay', 'RealWorldValue',...
'NumericTypeDisplay', 'none', 'FimathDisplay', 'none');
T = numerictype('WordLength',8,'FractionLength',7);
F = fimath('RoundMode','floor','OverflowMode','wrap');
a = fi(1,T,F)

a =

-1

b = fi(1,T)

b =

0.9922

Because you create a with a fimath object F that has OverflowMode set to
wrap, the value of a wraps to -1. Conversely, because you create b with the
default OverflowMode value of saturate, its value saturates to 0.9922.

Now, assign the fimath object F to b:

b.fimath = F

b =

0.9922

Because the assignment operation and corresponding overflow and saturation
happened when you created b, its value does not change when you assign
it the new fimath object F.

4-20

Using fimath to Specify Rounding and Overflow Modes

Note fi objects with no local fimath and created from a floating-point value
always get constructed with a RoundMode of nearest and an OverflowMode
of saturate. To construct fi objects with different RoundMode and
OverflowMode properties, specify the desired RoundMode and OverflowMode
properties in the fi constructor.

4-21

4 Working with fimath Objects

Using fimath to Share Arithmetic Rules
There are two ways of sharing fimath properties in Fixed-Point Toolbox
software:

• “Using Default fimath Values to Share Arithmetic Rules ” on page 4-22

• “Using Local fimath Objects to Share Arithmetic Rules” on page 4-22

Sharing fimath properties across fi objects ensures that the fi objects are
using the same arithmetic rules and helps you avoid “mismatched fimath”
errors.

Using Default fimath Values to Share Arithmetic Rules
You can ensure that your fi objects are all using the same fimath properties
by not specifying any local fimath. To assure no local fimath is associated
with a fi object, you can:

• Create a fi object using the fi constructor without specifying any fimath
properties in the constructor call. For example:

a = fi(pi)

• Create a fi object using the sfi or ufi constructor. All fi objects created
with these constructors have no local fimath.

b = sfi(pi)

• Use dot notation to remove a local fimath object from an existing fi object.
For example:

b = fi(pi, 'RoundMode', 'Fix')
b.fimath = []

Using Local fimath Objects to Share Arithmetic Rules
You can also use a fimath object to define common arithmetic rules that
you would like to use for multiple fi objects. You can then create your fi
objects, using the same fimath object for each. To do so, you must also
create a numerictype object to define a common data type and scaling. Refer
to Chapter 6, “Working with numerictype Objects” for more information

4-22

Using fimath to Share Arithmetic Rules

on numerictype objects. The following example shows the creation of a
numerictype object and fimath object, and then uses those objects to create
two fi objects with the same numerictype and fimath attributes:

T = numerictype('WordLength', 32, 'FractionLength', 30)

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 30

F = fimath('RoundMode', 'floor', 'OverflowMode', 'wrap')

F =

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

a = fi(pi, T, F)

a =

-0.8584

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 30

RoundMode: floor
OverflowMode: wrap

4-23

4 Working with fimath Objects

ProductMode: FullPrecision
MaxProductWordLength: 128

SumMode: FullPrecision
MaxSumWordLength: 128

b = fi(pi/2, T, F)

b =

1.5708

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 30

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

4-24

Using fimath ProductMode and SumMode

Using fimath ProductMode and SumMode

In this section...

“Example Setup” on page 4-25

“FullPrecision” on page 4-26

“KeepLSB” on page 4-27

“KeepMSB” on page 4-28

“SpecifyPrecision” on page 4-29

Example Setup
The examples in the sections of this topic show the differences among the four
settings of the ProductMode and SumMode properties:

• FullPrecision

• KeepLSB

• KeepMSB

• SpecifyPrecision

To follow along, first set the following preferences:

p = fipref;
p.NumericTypeDisplay = 'short';
p.FimathDisplay = 'none';
p.LoggingMode = 'on';
F = fimath('OverflowMode','wrap','RoundMode','floor',...

'CastBeforeSum',false);
warning off
format compact

Next, define fi objects a and b. Both have signed 8-bit data types. The
fraction length gets chosen automatically for each fi object to yield the best
possible precision:

a = fi(pi, true, 8)
a =

4-25

4 Working with fimath Objects

3.1563
s8,5

b = fi(exp(1), true, 8)
b =

2.7188
s8,5

FullPrecision
Now, set ProductMode and SumMode for a and b to FullPrecision and look
at some results:

F.ProductMode = 'FullPrecision';
F.SumMode = 'FullPrecision';
a.fimath = F;
b.fimath = F;
a
a =

3.1563 %011.00101
s8,5

b
b =

2.7188 %010.10111
s8,5

a*b
ans =

8.5811 %001000.1001010011
s16,10

a+b
ans =

5.8750 %0101.11100
s9,5

In FullPrecision mode, the product word length grows to the sum of the
word lengths of the operands. In this case, each operand has 8 bits, so the
product word length is 16 bits. The product fraction length is the sum of the
fraction lengths of the operands, in this case 5 + 5 = 10 bits.

4-26

Using fimath ProductMode and SumMode

The sum word length grows by one most significant bit to accommodate the
possibility of a carry bit. The sum fraction length aligns with the fraction
lengths of the operands, and all fractional bits are kept for full precision. In
this case, both operands have 5 fractional bits, so the sum has 5 fractional bits.

KeepLSB
Now, set ProductMode and SumMode for a and b to KeepLSB and look at some
results:

F.ProductMode = 'KeepLSB';
F.ProductWordLength = 12;
F.SumMode = 'KeepLSB';
F.SumWordLength = 12;
a.fimath = F;
b.fimath = F;
a
a =

3.1563 %011.00101
s8,5

b
b =

2.7188 %010.10111
s8,5

a*b
ans =

0.5811 %00.1001010011
s12,10

a+b
ans =

5.8750 %0000101.11100
s12,5

In KeepLSB mode, you specify the word lengths and the least significant bits
of results are automatically kept. This mode models the behavior of integer
operations in the C language.

4-27

4 Working with fimath Objects

The product fraction length is the sum of the fraction lengths of the operands.
In this case, each operand has 5 fractional bits, so the product fraction length
is 10 bits. In this mode, all 10 fractional bits are kept. Overflow occurs
because the full-precision result requires 6 integer bits, and only 2 integer
bits remain in the product.

The sum fraction length aligns with the fraction lengths of the operands, and
in this model all least significant bits are kept. In this case, both operands
had 5 fractional bits, so the sum has 5 fractional bits. The full-precision result
requires 4 integer bits, and 7 integer bits remain in the sum, so no overflow
occurs in the sum.

KeepMSB
Now, set ProductMode and SumMode for a and b to KeepMSB and look at some
results:

F.ProductMode = 'KeepMSB';
F.ProductWordLength = 12;
F.SumMode = 'KeepMSB';
F.SumWordLength = 12;
a.fimath = F;
b.fimath = F;
a
a =

3.1563 %011.00101
s8,5

b
b =

2.7188 %010.10111
s8,5

a*b
ans =

8.5781 %001000.100101
s12,6

a+b
ans =

4-28

Using fimath ProductMode and SumMode

5.8750 %0101.11100000
s12,8

In KeepMSB mode, you specify the word lengths and the most significant
bits of sum and product results are automatically kept. This mode models
the behavior of many DSP devices where the product and sum are kept in
double-wide registers, and the programmer chooses to transfer the most
significant bits from the registers to memory after each operation.

The full-precision product requires 6 integer bits, and the fraction length of
the product is adjusted to accommodate all 6 integer bits in this mode. No
overflow occurs. However, the full-precision product requires 10 fractional
bits, and only 6 are available. Therefore, precision is lost.

The full-precision sum requires 4 integer bits, and the fraction length of
the sum is adjusted to accommodate all 4 integer bits in this mode. The
full-precision sum requires only 5 fractional bits; in this case there are 8, so
there is no loss of precision.

SpecifyPrecision
Now set ProductMode and SumMode for a and b to SpecifyPrecision and
look at some results:

F.ProductMode = 'SpecifyPrecision';
F.ProductWordLength = 8;
F.ProductFractionLength = 7;
F.SumMode = 'SpecifyPrecision';
F.SumWordLength = 8;
F.SumFractionLength = 7;
a.fimath = F;
b.fimath = F;
a
a =

3.1563 %011.00101
s8,5

b
b =

2.7188 %010.10111

4-29

4 Working with fimath Objects

s8,5

a*b
ans =

0.5781 %0.1001010
s8,7

a+b
ans =

-0.1250 %1.1110000
s8,7

In SpecifyPrecision mode, you must specify both word length and fraction
length for sums and products. This example unwisely uses fractional formats
for the products and sums, with 8-bit word lengths and 7-bit fraction lengths.

The full-precision product requires 6 integer bits, and the example specifies
only 1, so the product overflows. The full-precision product requires 10
fractional bits, and the example only specifies 7, so there is precision loss in
the product.

The full-precision sum requires 4 integer bits, and the example specifies only
1, so the sum overflows. The full-precision sum requires 5 fractional bits, and
the example specifies 7, so there is no loss of precision in the sum.

4-30

fimath Object Functions

fimath Object Functions
You can learn about the functions associated with fimath objects in the
Function Reference.

4-31

4 Working with fimath Objects

4-32

5

Working with fipref Objects

• “Constructing fipref Objects” on page 5-2

• “fipref Object Properties” on page 5-3

• “Using fipref Objects to Set Display Preferences” on page 5-5

• “Using fipref Objects to Set Logging Preferences” on page 5-7

• “Using fipref Objects to Set Data Type Override Preferences” on page 5-12

• “fipref Object Functions” on page 5-15

5 Working with fipref Objects

Constructing fipref Objects
The fipref object defines the display and logging attributes for all fi objects.
You can use the fipref constructor function to create a new object.

To get started, type

P = fipref

to create a default fipref object.

P =
NumberDisplay: 'RealWorldValue'

NumericTypeDisplay: 'full'
FimathDisplay: 'full'

LoggingMode: 'Off'
DataTypeOverride: 'ForceOff'

The syntax

P = fipref(...'PropertyName','PropertyValue'...)

allows you to set properties for a fipref object at object creation with property
name/property value pairs.

Your fipref settings persist throughout your MATLAB session. Use
reset(fipref) to return to the default settings during your session. Use
savefipref to save your display preferences for subsequent MATLAB
sessions.

5-2

fipref Object Properties

fipref Object Properties

In this section...

“Display, Data Type Override, and Logging Properties” on page 5-3

“Setting fipref Object Properties” on page 5-3

Display, Data Type Override, and Logging Properties
The following properties of fipref objects are always writable:

• FimathDisplay— Display options for the local fimath attributes of a fi
object

• DataTypeOverride — Data type override options

• LoggingMode— Logging options for operations performed on fi objects

• NumericTypeDisplay— Display options for the numeric type attributes of
a fi object

• NumberDisplay— Display options for the value of a fi object

These properties are described in detail in the Property Reference. To learn
how to specify properties for fipref objects in Fixed-Point Toolbox software,
refer to “Setting fipref Object Properties” on page 5-3.

Setting fipref Object Properties

Setting fipref Properties at Object Creation
You can set properties of fipref objects at the time of object creation by
including properties after the arguments of the fipref constructor function.
For example, to set NumberDisplay to bin and NumericTypeDisplay to short,

P = fipref('NumberDisplay', 'bin', ...
'NumericTypeDisplay', 'short')

P =
NumberDisplay: 'bin'

NumericTypeDisplay: 'short'

5-3

5 Working with fipref Objects

FimathDisplay: 'full'
LoggingMode: 'Off'

DataTypeOverride: 'ForceOff'

Using Direct Property Referencing with fipref
You can reference directly into a property for setting or retrieving fipref
object property values using MATLAB structure-like referencing. You do this
by using a period to index into a property by name.

For example, to get the NumberDisplay of P,

P.NumberDisplay

ans =

bin

To set the NumericTypeDisplay of P,

P.NumericTypeDisplay = 'full'

P =
NumberDisplay: 'bin'

NumericTypeDisplay: 'full'
FimathDisplay: 'full'

LoggingMode: 'Off'
DataTypeOverride: 'ForceOff'

5-4

Using fipref Objects to Set Display Preferences

Using fipref Objects to Set Display Preferences
You use the fipref object to specify three aspects of the display of fi objects:
the object value, the local fimath properties, and the numerictype properties.

For example, the following code shows the default fipref display for a fi
object with a local fimath object:

a = fi(pi, 'RoundMode', 'floor', 'OverflowMode', 'wrap')

a =
3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

The default fipref display for a fi object with no local fimath is as follows:

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

Next, change the fipref display properties:

5-5

5 Working with fipref Objects

P = fipref;
P.NumberDisplay = 'bin';
P.NumericTypeDisplay = 'short';
P.FimathDisplay = 'none'

P =
NumberDisplay: 'bin'

NumericTypeDisplay: 'short'
FimathDisplay: 'none'

LoggingMode: 'Off'
DataTypeOverride: 'ForceOff'

a

a =
0110010010000111

s16,13

For more information on the default fipref display, see “Display Settings”
on page 1-7 in the Getting Started section of the Fixed-Point Toolbox User’s
Guide.

5-6

Using fipref Objects to Set Logging Preferences

Using fipref Objects to Set Logging Preferences

In this section...

“Logging Overflows and Underflows as Warnings” on page 5-7

“Accessing Logged Information with Functions” on page 5-9

Logging Overflows and Underflows as Warnings
Overflows and underflows are logged as warnings for all assignment, plus,
minus, and multiplication operations when the fipref LoggingMode property
is set to on. For example, try the following:

1 Create a signed fi object that is a vector of values from 1 to 5, with 8-bit
word length and 6-bit fraction length.

a = fi(1:5,1,8,6);

2 Define the fimath object associated with a, and indicate that you will
specify the sum and product word and fraction lengths.

F = a.fimath;
F.SumMode = 'SpecifyPrecision';
F.ProductMode = 'SpecifyPrecision';
a.fimath = F;

3 Define the fipref object and turn on overflow and underflow logging.

P = fipref;
P.LoggingMode = 'on';

4 Suppress the numerictype and fimath displays.

P.NumericTypeDisplay = 'none';
P.FimathDisplay = 'none';

5 Specify the sum and product word and fraction lengths.

a.SumWordLength = 16;
a.SumFractionLength = 15;

5-7

5 Working with fipref Objects

a.ProductWordLength = 16;
a.ProductFractionLength = 15;

6 Warnings are displayed for overflows and underflows in assignment
operations. For example, try:

a(1) = pi
Warning: 1 overflow occurred in the fi assignment operation.

a =

1.9844 1.9844 1.9844 1.9844 1.9844

a(1) = double(eps(a))/10
Warning: 1 underflow occurred in the fi assignment operation.

a =

0 1.9844 1.9844 1.9844 1.9844

7 Warnings are displayed for overflows and underflows in addition and
subtraction operations. For example, try:

a+a
Warning: 12 overflows occurred in the fi + operation.

ans =

0 1.0000 1.0000 1.0000 1.0000

a-a
Warning: 8 overflows occurred in the fi - operation.

ans =

0 0 0 0 0

8 Warnings are displayed for overflows and underflows in multiplication
operations. For example, try:

5-8

Using fipref Objects to Set Logging Preferences

a.*a
Warning: 4 product overflows occurred in the fi .* operation.

ans =

0 1.0000 1.0000 1.0000 1.0000

a*a'
Warning: 4 product overflows occurred in the fi * operation.
Warning: 3 sum overflows occurred in the fi * operation.

ans =

1.0000

The final example above is a complex multiplication that requires both
multiplication and addition operations. The warnings inform you of overflows
and underflows in both.

Because overflows and underflows are logged as warnings, you can use the
dbstop MATLAB function with the syntax

dbstop if warning

to find the exact lines in a file that are causing overflows or underflows.

Use

dbstop if warning fi:underflow

to stop only on lines that cause an underflow. Use

dbstop if warning fi:overflow

to stop only on lines that cause an overflow.

Accessing Logged Information with Functions
When the fipref LoggingMode property is set to on, you can use the following
functions to return logged information about assignment and creation
operations to the MATLAB command line:

5-9

5 Working with fipref Objects

• maxlog — Returns the maximum real-world value

• minlog — Returns the minimum value

• noverflows — Returns the number of overflows

• nunderflows — Returns the number of underflows

LoggingMode must be set to on before you perform any operation in order to
log information about it. To clear the log, use the function resetlog.

For example, consider the following. First turn logging on, then perform
operations, and then finally get information about the operations:

fipref('LoggingMode','on');
x = fi([-1.5 eps 0.5], true, 16, 15);
x(1) = 3.0;
maxlog(x)

ans =

1.0000

minlog(x)

ans =
-1

noverflows(x)

ans =

2

nunderflows(x)

ans =

1

5-10

Using fipref Objects to Set Logging Preferences

Next, reset the log and request the same information again. Note that the
functions return empty [], because logging has been reset since the operations
were run:

resetlog(x)
maxlog(x)

ans =

[]

minlog(x)

ans =

[]

noverflows(x)

ans =

[]

nunderflows(x)

ans =

[]

5-11

5 Working with fipref Objects

Using fipref Objects to Set Data Type Override Preferences

In this section...

“Overriding the Data Type of fi Objects” on page 5-12

“Using Data Type Override to Help Set Fixed-Point Scaling” on page 5-13

Overriding the Data Type of fi Objects
Use the fipref DataTypeOverride property to override fi objects with
singles, doubles, or scaled doubles. Data type override only occurs when the
fi constructor function is called. Objects that are created while data type
override is on have the overridden data type. They maintain that data type
when data type override is later turned off. To obtain an object with a data
type that is not the override data type, you must create an object when data
type override is off:

p = fipref('DataTypeOverride', 'TrueDoubles')

p =

NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'

FimathDisplay: 'full'
LoggingMode: 'Off'

DataTypeOverride: 'TrueDoubles'

a = fi(pi)

a =

3.1416

DataTypeMode: Double

p = fipref('DataTypeOverride', 'ForceOff')

p =

5-12

Using fipref Objects to Set Data Type Override Preferences

NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'

FimathDisplay: 'full'
LoggingMode: 'Off'

DataTypeOverride: 'ForceOff'

a

a =

3.1416

DataTypeMode: Double

b = fi(pi)

b =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

Tip To reset the fipref object to its default values use reset(fipref) or
reset(p), where p is a fipref object. This is useful to ensure that data type
override and logging are off.

Using Data Type Override to Help Set Fixed-Point
Scaling
Choosing the scaling for the fixed-point variables in your algorithms can
be difficult. In Fixed-Point Toolbox software, you can use a combination of
data type override and min/max logging to help you discover the numerical
ranges that your fixed-point data types need to cover. These ranges dictate
the appropriate scalings for your fixed-point data types. In general, the
procedure is

5-13

5 Working with fipref Objects

1 Implement your algorithm using fixed-point fi objects, using initial “best
guesses” for word lengths and scalings.

2 Set the fipref DataTypeOverride property to ScaledDoubles, TrueSingles,
or TrueDoubles.

3 Set the fipref LoggingMode property to on.

4 Use the maxlog and minlog functions to log the maximum and minimum
values achieved by the variables in your algorithm in floating-point mode.

5 Set the fipref DataTypeOverride property to ForceOff.

6 Use the information obtained in step 4 to set the fixed-point scaling for each
variable in your algorithm such that the full numerical range of each variable
is representable by its data type and scaling.

A detailed example of this process is shown in the Fixed-Point Toolbox
Fixed-Point Data Type Override, Min/Max Logging, and Scaling demo.

5-14

fipref Object Functions

fipref Object Functions
You can learn about the functions associated with fipref objects in the
Function Reference.

5-15

5 Working with fipref Objects

5-16

6

Working with numerictype
Objects

• “Constructing numerictype Objects” on page 6-2

• “numerictype Object Properties” on page 6-7

• “The numerictype Structure” on page 6-11

• “Using numerictype Objects to Share Data Type and Scaling Settings of fi
objects” on page 6-14

• “numerictype Object Functions” on page 6-17

6 Working with numerictype Objects

Constructing numerictype Objects

In this section...

“numerictype Object Syntaxes” on page 6-2

“Example: Constructing a numerictype Object with Property Name and
Property Value Pairs” on page 6-3

“Example: Copying a numerictype Object” on page 6-4

“Example: Building numerictype Object Constructors in a GUI” on page 6-5

numerictype Object Syntaxes
numerictype objects define the data type and scaling attributes of fi
objects, as well as Simulink signals and model parameters. You can create
numerictype objects in Fixed-Point Toolbox software in one of two ways:

• You can use the numerictype constructor function to create a new object.

• You can use the numerictype constructor function to copy an existing
numerictype object.

To get started, type

T = numerictype

to create a default numerictype object.

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

To see all of the numerictype object syntaxes, refer to the numerictype
constructor function reference page.

6-2

Constructing numerictype Objects

The following examples show different ways of constructing numerictype
objects. For more examples of constructing numerictype objects, see the
“Examples” on the numerictype constructor function reference page.

Example: Constructing a numerictype Object with
Property Name and Property Value Pairs
When you create a numerictype object using property name and property
value pairs, Fixed-Point Toolbox software first creates a default numerictype
object, and then, for each property name you specify in the constructor,
assigns the corresponding value.

This behavior differs from the behavior that occurs when you use a syntax
such as T = numerictype(s,w), where you only specify the property values
in the constructor. Using such a syntax results in no default numerictype
object being created, and the numerictype object receives only the assigned
property values that are specified in the constructor.

The following example shows how the property name/property value syntax
creates a slightly different numerictype object than the property values
syntax, even when you specify the same property values in both constructors.

To demonstrate this difference, suppose you want to create an unsigned
numerictype object with a word length of 32 bits.

First, create the numerictype object using property name/property value
pairs.

T1 = numerictype('signed',0,'wordlength',32)

T1 =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 32

FractionLength: 15

6-3

6 Working with numerictype Objects

The numerictype object T1 has the same DataTypeMode and FractionLength
as a default numerictype object, but the WordLength and Signed properties
are overwritten with the values you specified.

Now, create another unsigned 32 bit numerictype object, but this time specify
only property values in the constructor.

T2 = numerictype(0,32)

T2 =

DataTypeMode: Fixed-point: unspecified scaling
Signedness: Unsigned
WordLength: 32

Unlike T1, T2 only has the property values you specified. The DataTypeMode
of T2 is Fixed-Point: unspecified scaling, so no fraction length is
assigned.

fi objects cannot have unspecified numerictype properties. Thus, all
unspecified numerictype object properties become specified at the time of
fi object creation.

Example: Copying a numerictype Object
To copy a numerictype object, simply use assignment as in the following
example:

T = numerictype;
U = T;
isequal(T,U)

ans =

1

6-4

Constructing numerictype Objects

Example: Building numerictype Object Constructors
in a GUI
When you are working with files in MATLAB, you can build your numerictype
object constructors using the Insert numerictype Constructor dialog box.
After specifying the properties of the numerictype object in the dialog box,
you can insert the prepopulated numerictype object constructor string at a
specific location in your file.

For example, to create a signed numerictype object with binary-point scaling,
a word length of 32 bits and a fraction length of 30 bits, perform the following
steps:

1 Open the Insert numerictype Constructor dialog box by selecting
Tools > Fixed-Point Toolbox > Insert numerictype Constructor
from the editor menu.

2 Use the edit boxes and drop-down menus to specify the following properties
of the numerictype object:

• Data type mode = Fixed-point: binary point scaling

• Signedness = Signed

• Word length = 32

• Fraction length = 30

3 To insert the numerictype object constructor string in your file, place
your cursor at the desired location in the file, and click OK on the Insert

6-5

6 Working with numerictype Objects

numerictype Constructor dialog box. Clicking OK closes the Insert
numerictype Constructor dialog box and automatically populates the
numerictype object constructor string in your file:

6-6

numerictype Object Properties

numerictype Object Properties

In this section...

“Data Type and Scaling Properties” on page 6-7

“Setting numerictype Object Properties” on page 6-8

Data Type and Scaling Properties
All properties of a numerictype object are writable. However, the
numerictype properties of a fi object become read only after the fi object has
been created. Any numerictype properties of a fi object that are unspecified
at the time of fi object creation are automatically set to their default values.
The properties of a numerictype object are:

• Bias — Bias

• DataType — Data type category

• DataTypeMode — Data type and scaling mode

• FixedExponent — Fixed-point exponent

• SlopeAdjustmentFactor — Slope adjustment

• FractionLength— Fraction length of the stored integer value, in bits

• Scaling — Fixed-point scaling mode

• Signed — Signed or unsigned

• Signedness — Signed, unsigned, or auto

• Slope — Slope

• WordLength— Word length of the stored integer value, in bits

These properties are described in detail in the Property Reference. To learn
how to specify properties for numerictype objects in Fixed-Point Toolbox
software, refer to “Setting numerictype Object Properties” on page 6-8.

6-7

6 Working with numerictype Objects

Setting numerictype Object Properties

Setting numerictype Properties at Object Creation
You can set properties of numerictype objects at the time of object creation
by including properties after the arguments of the numerictype constructor
function.

For example, to set the word length to 32 bits and the fraction length to 30 bits,

T = numerictype('WordLength', 32, 'FractionLength', 30)

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 30

Using Direct Property Referencing with numerictype Objects
You can reference directly into a property for setting or retrieving
numerictype object property values using MATLAB structure-like
referencing. You do this by using a period to index into a property by name.

For example, to get the word length of T,

T.WordLength

ans =

32

To set the fraction length of T,

T.FractionLength = 31

T =

6-8

numerictype Object Properties

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 31

Setting numerictype Properties in the Model Explorer
You can view and change the properties for any numerictype object defined
in the MATLAB workspace in the Model Explorer. Open the Model Explorer
by selecting View > Model Explorer in any Simulink model, or by typing
daexplr at the MATLAB command line.

The figure below shows the Model Explorer when you define the following
numerictype objects in the MATLAB workspace:

T = numerictype

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

U = numerictype('DataTypeMode', 'Fixed-point: slope and bias')

U =

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 2^-15
Bias: 0

6-9

6 Working with numerictype Objects

Select the Base Workspace node in the Model Hierarchy pane to view
the current objects in the Contents pane. When you select a numerictype
object in the Contents pane, you can view and change its properties in the
Dialog pane.

6-10

The numerictype Structure

The numerictype Structure

In this section...

“Valid Values for numerictype Structure Properties” on page 6-11

“Properties That Affect the Slope” on page 6-13

“Stored Integer Value and Real World Value” on page 6-13

Valid Values for numerictype Structure Properties
The numerictype object contains all the data type and scaling attributes
of a fixed-point object. The numerictype object behaves like any MATLAB
structure, except that it only lets you set valid values for defined fields. The
following table shows the possible settings of each field of the structure.

Note When you create a fi object, any unspecified field of the numerictype
object reverts to its default value. Thus, if the DataTypeMode is set to
unspecified scaling, it defaults to binary point scaling when the fi
object is created. If the Signedness property of the numerictype object is set
to Auto, it defaults to Signed when the fi object is created.

DataTypeMode DataType Scaling Signedness
Word-
Length

Fraction-
Length Slope Bias

Fixed-point data types

Fixed-point:
binary point
scaling

Fixed BinaryPoint Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

Positive
or
negative
integer

2^(-fraction
length)

0

Fixed-point:
slope and
bias scaling

Fixed SlopeBias Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

N/A Any
floating-
point
number

Any
floating-
point
number

6-11

6 Working with numerictype Objects

DataTypeMode DataType Scaling Signedness
Word-
Length

Fraction-
Length Slope Bias

Fixed-point:
unspecified
scaling

Fixed Unspecified Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

N/A N/A N/A

Scaled double data types

Scaled
double:
binary point
scaling

ScaledDouble BinaryPoint Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

Positive
or
negative
integer

2^(-fraction
length)

0

Scaled
double:
slope and
bias scaling

ScaledDouble SlopeBias Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

N/A Any
floating-
point
number

Any
floating-
point
number

Scaled
double:
unspecified
scaling

ScaledDouble Unspecified Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

N/A N/A N/A

Built-in data types

Double double N/A 1
true

64 0 1 0

Single single N/A 1
true

32 0 1 0

Boolean boolean N/A 0
false

1 0 1 0

You cannot change the numerictype properties of a fi object after fi object
creation.

6-12

The numerictype Structure

Properties That Affect the Slope
The Slope field of the numerictype structure is related to the
SlopeAdjustmentFactor and FixedExponent properties by

slope slope adjustment factor fixed exponent= × 2

The FixedExponent and FractionLength properties are related by

fixed exponent fraction length= −

If you set the SlopeAdjustmentFactor, FixedExponent, or FractionLength
property, the Slope field is modified.

Stored Integer Value and Real World Value
The numerictype StoredIntegerValue and RealWorldValue properties are
related according to

real world value stored integer value -fraction length- = × 2

which is equivalent to

real world value

stored integer value slope a

-

=

× (ddjustment factor biasfixed exponent× +2)

If any of these properties is updated, the others are modified accordingly.

6-13

6 Working with numerictype Objects

Using numerictype Objects to Share Data Type and Scaling
Settings of fi objects

You can use a numerictype object to define common data type and scaling
rules that you would like to use for many fi objects. You can then create
multiple fi objects, using the same numerictype object for each.

Example 1
In the following example, you create a numerictype object T with word length
32 and fraction length 28. Next, to ensure that your fi objects have the same
numerictype attributes, create fi objects a and b using your numerictype
object T.

format long g
T = numerictype('WordLength',32,'FractionLength',28)

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 28

a = fi(pi,T)

a =

3.1415926553309

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 28

b = fi(pi/2, T)

6-14

Using numerictype Objects to Share Data Type and Scaling Settings of fi objects

b =

1.5707963258028

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 28

Example 2
In this example, start by creating a numerictype object T with [Slope Bias]
scaling. Next, use that object to create two fi objects, c and d with the same
numerictype attributes:

T = numerictype('scaling','slopebias','slope', 2^2, 'bias', 0)

T =

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 2^2
Bias: 0

c = fi(pi, T)

c =

4

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 2^2
Bias: 0

d = fi(pi/2, T)

6-15

6 Working with numerictype Objects

d =

0

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 2^2
Bias: 0

6-16

numerictype Object Functions

numerictype Object Functions
You can learn about the functions associated with numerictype objects in the
Function Reference.

6-17

6 Working with numerictype Objects

6-18

7

Working with quantizer
Objects

• “Constructing quantizer Objects” on page 7-2

• “quantizer Object Properties” on page 7-3

• “Quantizing Data with quantizer Objects” on page 7-4

• “Transformations for Quantized Data” on page 7-6

• “quantizer Object Functions” on page 7-7

7 Working with quantizer Objects

Constructing quantizer Objects
You can use quantizer objects to quantize data sets. You can create
quantizer objects in Fixed-Point Toolbox software in one of two ways:

• You can use the quantizer constructor function to create a new object.

• You can use the quantizer constructor function to copy a quantizer object.

To create a quantizer object with default properties, type

q = quantizer

q =

DataMode = fixed
RoundMode = floor

OverflowMode = saturate
Format = [16 15]

To copy a quantizer object, simply use assignment as in the following
example:

q = quantizer;
r = q;
isequal(q,r)

ans =

1

A listing of all the properties of the quantizer object q you just created is
displayed along with the associated property values. All property values
are set to defaults when you construct a quantizer object this way. See
“quantizer Object Properties” on page 7-3 for more details.

7-2

quantizer Object Properties

quantizer Object Properties
The following properties of quantizer objects are always writable:

• DataMode — Type of arithmetic used in quantization

• Format — Data format of a quantizer object

• OverflowMode — Overflow-handling mode

• RoundMode — Rounding mode

See the Property Reference for more details about these properties, including
their possible values.

For example, to create a fixed-point quantizer object with

• The Format property value set to [16,14]

• The OverflowMode property value set to 'saturate'

• The RoundMode property value set to 'ceil'

type

q = quantizer('datamode','fixed','format',[16,14],...
'overflowmode','saturate','roundmode','ceil')

You do not have to include quantizer object property names when you set
quantizer object property values.

For example, you can create quantizer object q from the previous example
by typing

q = quantizer('fixed',[16,14],'saturate','ceil')

Note You do not have to include default property values when you construct
a quantizer object. In this example, you could leave out 'fixed' and
'saturate'.

7-3

7 Working with quantizer Objects

Quantizing Data with quantizer Objects
You construct a quantizer object to specify the quantization parameters
to use when you quantize data sets. You can use the quantize function to
quantize data according to a quantizer object’s specifications.

Once you quantize data with a quantizer object, its state values might
change.

The following example shows

• How you use quantize to quantize data

• How quantization affects quantizer object states

• How you reset quantizer object states to their default values using reset

1 Construct an example data set and a quantizer object.

format long g
randn('state',0);
x = randn(100,4);
q = quantizer([16,14]);

2 Retrieve the values of the maxlog and noverflows states.

q.maxlog

ans =

-1.79769313486232e+308

q.noverflows

ans =

0

Note that maxlog is equal to -realmax, which indicates that the quantizer
q is in a reset state.

3 Quantize the data set according to the quantizer object’s specifications.

7-4

Quantizing Data with quantizer Objects

y = quantize(q,x);
Warning: 15 overflows.

4 Check the values of maxlog and noverflows.

q.maxlog

ans =

1.99993896484375

q.noverflows

ans =

15

Note that the maximum logged value was taken after quantization, that is,
q.maxlog == max(y).

5 Reset the quantizer states and check them.

reset(q)
q.maxlog

ans =

-1.79769313486232e+308

q.noverflows

ans =

0

7-5

7 Working with quantizer Objects

Transformations for Quantized Data
You can convert data values from numeric to hexadecimal or binary according
to a quantizer object’s specifications.

Use

• num2bin to convert data to binary

• num2hex to convert data to hexadecimal

• hex2num to convert hexadecimal data to numeric

• bin2num to convert binary data to numeric

For example,

q = quantizer([3 2]);
x = [0.75 -0.25

0.50 -0.50
0.25 -0.75

0 -1];
b = num2bin(q,x)

b =
011
010
001
000
111
110
101
100

produces all two’s complement fractional representations of 3-bit fixed-point
numbers.

7-6

quantizer Object Functions

quantizer Object Functions
You can learn about the functions associated with quantizer objects in the
Function Reference.

7-7

7 Working with quantizer Objects

7-8

8

Code Acceleration and Code
Generation from MATLAB
for Fixed-Point Algorithms

• “What Are Code Acceleration and Code Generation from MATLAB?” on
page 8-3

• “Requirements for Generating MEX Files from MATLAB Algorithms” on
page 8-4

• “Functions Supported for Code Acceleration and Code Generation from
MATLAB” on page 8-5

• “Workflow for Code Acceleration and Code Generation from MATLAB for
Fixed-Point Algorithms” on page 8-15

• “Setting Up a Supported C Compiler to Generate MEX Functions” on page
8-16

• “Using fiaccel” on page 8-17

• “Setting Up File Infrastructure and Paths” on page 8-22

• “Preparing MATLAB Algorithms for Code Generation” on page 8-26

• “Setting MEX Compilation Options” on page 8-29

• “Specifying Properties of Primary Function Inputs” on page 8-37

• “Best Practices for Accelerating Fixed-Point MATLAB Code” on page 8-49

• “Working with Fixed-Point Code Generation Reports” on page 8-53

• “Generating MEX Functions from MATLAB Code That Uses Global Data”
on page 8-58

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

• “Defining Input Properties Programmatically in the MATLAB File” on
page 8-64

• “Controlling Run-Time Checks” on page 8-73

• “MATLAB® Coder™” on page 8-76

• “MATLAB Function Block” on page 8-77

8-2

What Are Code Acceleration and Code Generation from MATLAB®?

What Are Code Acceleration and Code Generation from
MATLAB?

In many cases, you may want your code to run faster and more efficiently.
Code acceleration provides optimizations for accelerating fixed-point
algorithms through MEX file generation. In Fixed-Point Toolbox the fiaccel
function converts your MATLAB code to a MEX function and can greatly
accelerate the execution speed of your fixed-point algorithms.

Code generation creates efficient, production-quality C/C++ code for desktop
and embedded applications. There are several ways to use Fixed-Point
Toolbox software to generate C/C++ code.

Use... To... Requires... See...

MATLAB
Coder™
(codegen)
function

Automatically
convert
MATLAB code
to C/C++ code

MATLAB Coder
code generation
software license

“Generating
C Code from
MATLAB Code
at the Command
Line” in the
MATLAB Coder
documentation

MATLAB
Function

Use MATLAB
code in your
Simulink models
that generate
embeddable
C/C++ code

Simulink license “Using the
MATLAB
Function Block”
in the Simulink
documentation

MATLAB code generation supports variable-size arrays and matrices with
known upper bounds. To learn more about using variable-size signals,
see “What Is Variable-Size Data?” in the Code Generation for MATLAB
documentation.

8-3

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Requirements for Generating MEX Files from MATLAB
Algorithms

You use the fiaccel function to generate MEX code from a MATLAB
algorithm. The algorithm must meet these requirements:

• Must be a MATLAB function, not a script

• Must meet the requirements listed on the fiaccel reference page

• Does not call custom C code using any of the following constructs:

- coder.ceval

- coder.ref

- coder.rref

- coder.wref

8-4

Functions Supported for Code Acceleration and Code Generation from MATLAB®

Functions Supported for Code Acceleration and Code
Generation from MATLAB

In addition to any function-specific limitations listed in the table, the following
general limitations always apply to the use of Fixed-Point Toolbox functions
in generated code or with fiaccel:

• fipref and quantizer objects are not supported.

• Dot notation is only supported for getting the values of fimath and
numerictype properties. Dot notation is not supported for fi objects, and it
is not supported for setting properties.

• Word lengths greater than 128 bits are not supported.

• You cannot change the fimath or numerictype of a given variable after
that variable has been created.

• The boolean and ScaledDouble values of the DataTypeMode and DataType
properties are not supported.

• For all SumMode property settings other than FullPrecision, the
CastBeforeSum property must be set to true.

• The numel function returns the number of elements of fi objects in the
generated code.

• When you compile code containing fi objects with nontrivial slope and bias
scaling, you may see different results in generated code than you achieve
by running the same code in MATLAB.

• All general limitations of C/C++ code generated from MATLAB apply. See
“MATLAB Language Features Not Supported for Code Generation” for
more information.

Function Remarks/Limitations

abs N/A

add N/A

all N/A

any N/A

8-5

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Function Remarks/Limitations

bitand Not supported for slope-bias scaled fi objects.

bitandreduce N/A

bitcmp N/A

bitconcat N/A

bitget N/A

bitor Not supported for slope-bias scaled fi objects.

bitorreduce N/A

bitreplicate N/A

bitrol N/A

bitror N/A

bitset N/A

bitshift N/A

bitsliceget N/A

bitsll N/A

bitsra N/A

bitsrl N/A

bitxor Not supported for slope-bias scaled fi objects.

bitxorreduce N/A

ceil N/A

complex N/A

conj N/A

8-6

Functions Supported for Code Acceleration and Code Generation from MATLAB®

Function Remarks/Limitations

conv • Variable-sized inputs are only supported when the
SumMode property of the governing fimath is set to
Specify precision or Keep LSB.

• For variable-sized signals, you may see different
results between generated code and MATLAB.

- In the generated code, the output for
variable-sized signals is always computed using
the SumMode property of the governing fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode property
of the governing fimath when both inputs
are nonscalar. However, if either input is a
scalar, MATLAB computes the output using the
ProductMode of the governing fimath.

convergent N/A

cordicabs Variable-size signals are not supported.

cordicangle Variable-size signals are not supported.

cordicatan2 Variable-size signals are not supported.

cordiccart2pol Variable-size signals are not supported.

cordiccexp Variable-size signals are not supported.

cordiccos Variable-size signals are not supported.

cordicpol2cart Variable-size signals are not supported.

cordicrotate Variable-size signals are not supported.

cordicsin Variable-size signals are not supported.

cordicsincos Variable-size signals are not supported.

ctranspose N/A

diag If supplied, the index, k, must be a real and scalar
integer value that is not a fi object.

disp —

8-7

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Function Remarks/Limitations

divide • Any non-fi input must be constant; that is, its
value must be known at compile time so that it can
be cast to a fi object.

• Complex and imaginary divisors are not supported.

• Code generation in MATLAB does not support the
syntax T.divide(a,b).

double N/A

end N/A

eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single
and fi double signals.

eq Not supported for fixed-point signals with different
biases.

fi • Use to create a fixed-point constant or variable in
the generated code.

• The default constructor syntax without any input
arguments is not supported.

• The syntax
fi('PropertyName',PropertyValue...)
is not supported. To use property
name/property value pairs, you must first
specify the value v of the fi object as in
fi(v,'PropertyName',PropertyValue...).

• Works for all input values when complete
numerictype information of the fi object is
provided.

• Works only for constant input values (value of
input must be known at compile time) when
complete numerictype information of the fi object
is not specified.

8-8

Functions Supported for Code Acceleration and Code Generation from MATLAB®

Function Remarks/Limitations

• numerictype object information must be available
for nonfixed-point Simulink inputs.

filter • Variable-sized inputs are only supported when the
SumMode property of the governing fimath is set to
Specify precision or Keep LSB.

fimath • Fixed-point signals coming in to a MATLAB
Function block from Simulink are assigned a
fimath object. You define this object in the
MATLAB Function block dialog in the Model
Explorer.

• Use to create fimath objects in the generated code.

fix N/A

floor N/A

ge Not supported for fixed-point signals with different
biases.

get The syntax structure = get(o) is not supported.

getlsb N/A

getmsb N/A

gt Not supported for fixed-point signals with different
biases.

horzcat N/A

imag N/A

int8, int16, int32 N/A

iscolumn N/A

isempty N/A

isequal N/A

isfi N/A

isfimath N/A

isfimathlocal N/A

8-9

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Function Remarks/Limitations

isfinite N/A

isinf N/A

isnan N/A

isnumeric N/A

isnumerictype N/A

isreal N/A

isrow N/A

isscalar N/A

issigned N/A

isvector N/A

le Not supported for fixed-point signals with different
biases.

length N/A

logical N/A

lowerbound N/A

lsb • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single
and double signals.

lt Not supported for fixed-point signals with different
biases.

max N/A

mean N/A

median N/A

min N/A

minus Any non-fi input must be constant; that is, its value
must be known at compile time so that it can be cast
to a fi object.

8-10

Functions Supported for Code Acceleration and Code Generation from MATLAB®

Function Remarks/Limitations

mpower • The exponent input, k, must be constant; that is,
its value must be known at compile time.

• Variable-sized inputs are only supported when the
SumMode property of the governing fimath is set to
Specify precision or Keep LSB.

• For variable-sized signals, you may see different
results between the generated code and MATLAB.

- In the generated code, the output for
variable-sized signals is always computed using
the SumMode property of the governing fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode property
of the governing fimath when the first input,
a, is nonscalar. However, when a is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

mpy When you provide complex inputs to the mpy function
inside of a MATLAB Function block, you must declare
the input as complex before running the simulation.
To do so, go to the Ports and data manager and set
the Complexity parameter for all known complex
inputs to On.

mrdivide N/A

mtimes • Any non-fi input must be constant; that is, its
value must be known at compile time so that it can
be cast to a fi object.

• Variable-sized inputs are only supported when the
SumMode property of the governing fimath is set to
Specify precision or Keep LSB.

• For variable-sized signals, you may see different
results between the generated code and MATLAB.

8-11

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Function Remarks/Limitations

- In the generated code, the output for
variable-sized signals is always computed using
the SumMode property of the governing fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode property
of the governing fimath when both inputs
are nonscalar. However, if either input is a
scalar, MATLAB computes the output using the
ProductMode of the governing fimath.

ndims N/A

ne Not supported for fixed-point signals with different
biases.

nearest N/A

numberofelements numberofelements and numel both work the same as
MATLAB numel for fi objects in the generated code.

numerictype • Fixed-point signals coming in to a MATLAB
Function block from Simulink are assigned a
numerictype object that is populated with the
signal’s data type and scaling information.

• Returns the data type when the input is a
nonfixed-point signal.

• Use to create numerictype objects in generated
code.

permute N/A

plus Any non-fi input must be constant; that is, its value
must be known at compile time so that it can be cast
to a fi object.

pow2 N/A

power The exponent input, k, must be constant; that is, its
value must be known at compile time.

range N/A

8-12

Functions Supported for Code Acceleration and Code Generation from MATLAB®

Function Remarks/Limitations

rdivide N/A

real N/A

realmax N/A

realmin N/A

reinterpretcast N/A

repmat N/A

rescale N/A

reshape N/A

round N/A

sfi N/A

sign N/A

single N/A

size N/A

sort N/A

sqrt • Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.

storedInteger N/A

storedIntegerToDoubleN/A

sub N/A

subsasgn N/A

subsref N/A

sum Variable-sized inputs are only supported when the
SumMode property of the governing fimath is set to
Specify precision or Keep LSB.

8-13

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Function Remarks/Limitations

times • Any non-fi input must be constant; that is, its
value must be known at compile time so that it can
be cast to a fi object.

• When you provide complex inputs to the times
function inside of a MATLAB Function block, you
must declare the input as complex before running
the simulation. To do so, go to the Ports and data
manager and set the Complexity parameter for
all known complex inputs to On.

transpose N/A

tril If supplied, the index, k, must be a real and scalar
integer value that is not a fi object.

triu If supplied, the index, k, must be a real and scalar
integer value that is not a fi object.

ufi N/A

uint8, uint16, uint32N/A

uminus N/A

uplus N/A

upperbound N/A

vertcat N/A

8-14

Workflow for Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Workflow for Code Acceleration and Code Generation
from MATLAB for Fixed-Point Algorithms

Step Action Details

1 Set up your C compiler. See “Setting Up a Supported C Compiler to
Generate MEX Functions” on page 8-16

2 Set up your file infrastructure. See “Setting Up File Infrastructure and
Paths” on page 8-22.

3 Make your MATLAB algorithm suitable for
code generation

See “Best Practices for Accelerating
Fixed-Point MATLAB Code” on page 8-49.

4 Set compilation options. See “Setting MEX Compilation Options” on
page 8-29

5 Specify properties of primary function
inputs.

See “Specifying Properties of Primary
Function Inputs” on page 8-37.

6 Run fiaccel with the appropriate
command-line options.

See “Recommended Compilation Options
for fiaccel” on page 8-49

8-15

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Setting Up a Supported C Compiler to Generate MEX
Functions

Set up your C compiler by running mex -setup, as described in the
documentation for mex in the MATLAB Function Reference. You must
run this command even if you use the default C compiler that comes with
MATLAB for Windows® platforms. You can also use mex to choose and
configure a different C compiler, as described in “What You Need to Build
MEX-Files” in the MATLAB External Interfaces documentation.

You can use the following compilers to generate MEX functions with fiaccel:

• Lcc-win32 C 2.4.1

• Microsoft® Visual C++® 2008 Express

• Microsoft Visual C++ 2005

• Microsoft Visual C++ 6.0

• Open WATCOM C++ 1.7

• GCC

8-16

Using fiaccel

Using fiaccel

In this section...

“Speeding Up Fixed-Point Execution with the fiaccel Function” on page 8-17

“Running fiaccel” on page 8-17

“Generated Files and Locations” on page 8-18

“Using Data Type Override with fiaccel” on page 8-21

Speeding Up Fixed-Point Execution with the fiaccel
Function
You can convert fixed-point MATLAB code to MEX functions using fiaccel.
The generated MEX functions contain optimizations to automatically
accelerate fixed-point algorithms to compiled C/C++ code speed in MATLAB.
The fiaccel function can greatly increase the execution speed of your
algorithms.

Running fiaccel
The basic command is:

fiaccel M_fcn

By default, fiaccel performs the following actions:

• Searches for the function M_fcn stored in the file M_fcn.m as specified in
“Compile Path Search Order” on page 8-22.

• Compiles M_fcn to MEX code.

• If there are no errors or warnings, generates a platform-specific MEX file in
the current folder, using the naming conventions described in “File Naming
Conventions” on page 8-52.

• If there are errors, does not generate a MEX file, but produces an error
report in a default output folder, as described in “Generated Files and
Locations” on page 8-18.

8-17

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

• If there are warnings, but no errors, generates a platform-specific MEX file
in the current folder, but does report the warnings.

You can modify this default behavior by specifying one or more compiler
options with fiaccel, separated by spaces on the command line.

Generated Files and Locations
fiaccel generates files in the following locations:

Generates: In:

Platform-specific MEX files Current folder

HTML reports

(if errors or warnings occur during
compilation)

Default output folder:

fiaccel/mex/M_fcn_name/html

You can change the name and location of generated files by using the options
-o and -d when you run fiaccel.

In this example, you will use the fiaccel function to compile different parts
of a simple algorithm. By comparing the run times of the two cases, you will
see the benefits and best use of the fiaccel function.

Example: Comparing Run Times When Accelerating Different
Algorithm Parts
The algorithm used throughout this example replicates the functionality of
the MATLAB sum function, which sums the columns of a matrix. To see the
algorithm, type open fi_matrix_column_sum.m at the MATLAB command
line.

function B = fi_matrix_column_sum(A)
% Sum the columns of matrix A.
%#codegen

[m,n] = size(A);
w = get(A,'WordLength') + ceil(log2(m));
f = get(A,'FractionLength');
B = fi(zeros(1,n),true,w,f);

8-18

Using fiaccel

for j = 1:n
for i = 1:m

B(j) = B(j) + A(i,j);
end

end

Trial 1: Best Performance
The best way to speed up the execution of the algorithm is to compile the
entire algorithm using the fiaccel function. To evaluate the performance
improvement provided by the fiaccel function when the entire algorithm
is compiled, run the following code.

The first portion of code executes the algorithm using only MATLAB
functions. The second portion of the code compiles the entire algorithm using
the fiaccel function. The MATLAB tic and toc functions keep track of the
run times for each method of execution.

% MATLAB
fipref('NumericTypeDisplay','short');
A = fi(randn(1000,10));
tic
B = fi_matrix_column_sum(A)
t_matrix_column_sum_m = toc

% fiaccel
fiaccel fi_matrix_column_sum -args {A} ...
-I [matlabroot '/toolbox/fixedpoint/fidemos']
tic
B = fi_matrix_column_sum_mex(A);
t_matrix_column_sum_mex = toc

Trial 2: Worst Performance
Compiling only the smallest unit of computation using the fiaccel function
leads to much slower execution. In some cases, the overhead that results
from calling the mex function inside a nested loop can cause even slower
execution than using MATLAB functions alone. To evaluate the performance
of the mex function when only the smallest unit of computation is compiled,
run the following code.

8-19

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

The first portion of code executes the algorithm using only MATLAB functions.
The second portion of the code compiles the smallest unit of computation with
the fiaccel function, leaving the rest of the computations to MATLAB.

% MATLAB
tic
[m,n] = size(A);
w = get(A,'WordLength') + ceil(log2(m));
f = get(A,'FractionLength');
B = fi(zeros(1,n),true,w,f);
for j = 1:n

for i = 1:m
B(j) = fi_scalar_sum(B(j),A(i,j));
% B(j) = B(j) + A(i,j);

end
end
t_scalar_sum_m = toc

% fiaccel
fiaccel fi_scalar_sum -args {B(1),A(1,1)} ...
-I [matlabroot '/toolbox/fixedpoint/fidemos']
tic
[m,n] = size(A);
w = get(A,'WordLength') + ceil(log2(m));
f = get(A,'FractionLength');
B = fi(zeros(1,n),true,w,f);
for j = 1:n

for i = 1:m
B(j) = fi_scalar_sum_mex(B(j),A(i,j));
% B(j) = B(j) + A(i,j);

end
end
t_scalar_sum_mex = toc

Ratio of Times
A comparison of Trial 1 and Trial 2 appears in the following table. Your
computer may record different times than the ones the table shows, but the
ratios should be approximately the same. There is an extreme difference
in ratios between the trial where the entire algorithm was compiled using

8-20

Using fiaccel

fiaccel (t_matrix_column_sum_mex.m) and where only the scalar sum was
compiled (t_scalar_sum_mex.m). Even the file with no fiaccel compilation
(t_matrix_column_sum_m) did better than when only the smallest unit of
computation was compiled using fiaccel (t_scalar_sum_mex).

X (Overall Performance
Rank)

Time X/Best X_m/X_mex

Trial 1: Best Performance

t_matrix_column_sum_m (2) 1.99759 84.4917

t_matrix_column_sum_mex
(1)

0.0236424 1

84.4917

Trial 2: Worst Performance

t_scalar_sum_m (4) 10.2067 431.71

t_scalar_sum_mex (3) 4.90664 207.536

2.08017

Using Data Type Override with fiaccel
Fixed-Point Toolbox software ships with a demonstration of how to generate a
MEX function from MATLAB code. The code in the demo takes the weighted
average of a signal to create a lowpass filter. To run the demo in the
Help browser select Demos under Fixed-Point Toolbox, and then select the
Fixed-Point Lowpass Filtering Using MATLAB for Code Generation demo.

You can specify data type override in this demo by typing an extra command
at the MATLAB prompt in the “Define Fixed-Point Parameters” section of
the demo. To turn data type override on, type the following command at
the MATLAB prompt after running the reset(fipref) demo command in
that section:

fipref('DataTypeOverride','TrueDoubles')

This command tells Fixed-Point Toolbox software to create all fi objects with
type fi double. When you compile the code using the fiaccel command in
the “Compile the M-File into a MEX File” section of the demo, the resulting
MEX-function uses floating-point data.

8-21

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Setting Up File Infrastructure and Paths

In this section...

“Compile Path Search Order” on page 8-22

“When to Use the Code Generation Path” on page 8-22

“Add Files to the Code Generation Path” on page 8-23

“Adding Folders to Search Paths” on page 8-23

“Naming Conventions” on page 8-23

Compile Path Search Order
fiaccel resolves function calls by searching first on the code generation
path and then on the MATLAB path. By default, fiaccel tries to compile
and generate code for functions it finds on the path unless you explicitly
declare the function to be extrinsic. An extrinsic function is a function on
the MATLAB path that is dispatched to MATLAB software for execution.
fiaccel does not compile extrinsic functions, but rather dispatches them to
MATLAB for execution.

When to Use the Code Generation Path
Use the code generation path to override a MATLAB function with a
customized version. Because fiaccel searches the code generation path first,
a MATLAB file on that path always shadows a MATLAB file of the same
name on the MATLAB path.

To override a MATLAB function with a customized version:

1 Create each version of the MATLAB function in identically named files.

2 Add the MATLAB version to the MATLAB path.

3 Add the customized version to the code generation path.

See “Adding Folders to Search Paths” on page 8-23.

8-22

Setting Up File Infrastructure and Paths

Add Files to the Code Generation Path
With fiaccel, you can prepend folders and files to the code generation path,
as described in “Adding Folders to Search Paths” on page 8-23. By default,
the code generation path contains the current folder and the toolbox functions
supported for code generation.

Adding Folders to Search Paths
To add folders to: Do this:

Code generation
path

Prepend folders to the code generation path by using
the fiaccel -I option.

MATLAB path Follow the instructions in “Adding a Folder to
the Search Path” in the MATLAB Programming
documentation.

Naming Conventions
MATLAB enforces naming conventions for functions and generated files.

• “Reserved Prefixes” on page 8-23

• “Reserved Keywords” on page 8-23

• “Conventions for Naming Generated files” on page 8-25

Reserved Prefixes
MATLAB reserves the prefix eml for global C functions and variables in
generated code. For example, run-time library function names all begin with
the prefix emlrt, such as emlrtCallMATLAB. To avoid naming conflicts, do not
name C functions or primary MATLAB functions with the prefix eml.

Reserved Keywords

• “C Reserved Keywords” on page 8-24

• “C++ Reserved Keywords” on page 8-24

• “Reserved Keywords for Code Generation” on page 8-25

8-23

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

MATLAB Coder software reserves certain words for its own use as keywords
of the generated code language. MATLAB Coder keywords are reserved for
use internal to MATLAB Coder software and should not be used in MATLAB
code as identifiers or function names. C reserved keywords should also not be
used in MATLAB code as identifiers or function names. If your MATLAB code
contains any reserved keywords, the code generation build does not complete
and an error message is displayed. To address this error, modify your code
to use identifiers or names that are not reserved.

If you are generating C++ code using the MATLAB Coder software, in
addition, your MATLAB code must not contain the “C++ Reserved Keywords”
on page 8-24.

C Reserved Keywords.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

C++ Reserved Keywords.

catch friend protected try

class inline public typeid

const_cast mutable reinterpret_cast typename

delete namespace static_cast using

dynamic_cast new template virtual

explicit operator this wchar_t

export private throw

8-24

Setting Up File Infrastructure and Paths

Reserved Keywords for Code Generation.

abs fortran localZCE rtNaN

asm HAVESTDIO localZCSV SeedFileBuffer

bool id_t matrix SeedFileBufferLen

boolean_T int_T MODEL single

byte_T int8_T MT TID01EQ

char_T int16_T NCSTATES time_T

cint8_T int32_T NULL true

cint16_T int64_T NUMST TRUE

cint32_T INTEGER_CODE pointer_T uint_T

creal_T LINK_DATA_BUFFER_SIZE PROFILING_ENABLED uint8_T

creal32_T LINK_DATA_STREAM PROFILING_NUM_SAMPLES uint16_T

creal64_T localB real_T uint32_T

cuint8_T localC real32_T uint64_T

cuint16_T localDWork real64_T UNUSED_PARAMETER

cuint32_T localP RT USE_RTMODEL

ERT localX RT_MALLOC VCAST_FLUSH_DATA

false localXdis rtInf vector

FALSE localXdot rtMinusInf

Conventions for Naming Generated files
MATLAB provides platform-specific extensions for MEX files.

Platform MEX File Extension

Linux® (32-bit) .mexglx

Linux x86-64 .mexa64

Windows (32-bit) .mexw32

Windows x64 .mexw64

8-25

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Preparing MATLAB Algorithms for Code Generation

In this section...

“Debugging Strategies” on page 8-26

“Detecting Errors at Design Time” on page 8-27

“Detecting Errors at Compile Time” on page 8-27

Debugging Strategies
To prepare your algorithms for code generation, MathWorks recommends
that you choose a debugging strategy for detecting and correcting violations
in your MATLAB applications, especially if they consist of a large number of
MATLAB files that call each other’s functions. Here are two best practices:

Debugging
Strategy

What to Do Pros Cons

Bottom-up
verification 1 Verify that your lowest-level

(leaf) functions are suitable
for code generation.

2 Work your way up
the function hierarchy
incrementally to compile
and verify each function,
ending with the top-level
function.

• Efficient

• Safe

• Easy to
isolate
syntax
violations

Requires application tests that
work from the bottom up

8-26

Preparing MATLAB® Algorithms for Code Generation

Debugging
Strategy

What to Do Pros Cons

Top-down
verification 1 Declare all functions called

by the top-level function to
be extrinsic so fiaccel does
not compile them.

2 Verify that your top-level
function is suitable for code
generation.

3 Work downward in the
function hierarchy to:

a. Remove extrinsic
declarations one by one

b. Compile and verify each
function, ending with the
leaf functions.

Lets you retain
your top-level
tests

Introduces extraneous code that
you must remove after code
verification, including:

• Extrinsic declarations

• Additional assignment
statements as necessary
to convert opaque values
returned by extrinsic
functions to nonopaque
values.

Detecting Errors at Design Time
To detect potential issues for MEX generation as you write your MATLAB
algorithm, add the %#codegen directive to the code that you want fiaccel
to compile. Adding this directive indicates that you intend to generate code
from the algorithm and turns on detailed diagnostics during MATLAB code
analysis (see “Check Code for Errors and Warnings” in the MATLAB Desktop
Tools and Development Environment documentation).

Detecting Errors at Compile Time
Before you can successfully generate code from a MATLAB algorithm, you
must verify that the algorithm does not contain syntax and semantics
violations that would cause compile-time errors, as described in “Preparing
MATLAB Algorithms for Code Generation” on page 8-26.

8-27

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

fiaccel checks for all potential syntax violations at compile time. When
fiaccel detects errors or warnings, it automatically produces a code
generation report that describes the issues and provides links to the offending
code. See “Working with Fixed-Point Code Generation Reports” on page 8-53.

If your MATLAB code calls functions on the MATLAB path, fiaccel attempts
to compile these functions unless you declare them to be extrinsic.

8-28

Setting MEX Compilation Options

Setting MEX Compilation Options

In this section...

“Working with the MEX Compiler Configuration Object” on page 8-29

“Modifying Compilation Options at the Command Line Using Dot Notation”
on page 8-29

“MEX Configuration Dialog Box Options ” on page 8-30

“How fiaccel Resolves Conflicting Options” on page 8-36

Working with the MEX Compiler Configuration Object
For MEX code generation, MATLAB provides a configuration object
coder.MEXConfig for fine-tuning the compilation. To set MEX compilation
options:

1 Define the compiler configuration object in the MATLAB workspace by
issuing a constructor command:

comp_cfg = coder.mexconfig

MATLAB displays the list of compiler options and their current values in
the command window.

2 Modify the compilation options as necessary. See “Modifying Compilation
Options at the Command Line Using Dot Notation” on page 8-29

3 Invoke fiaccel with the -config option and specify the configuration
object as its argument:

fiaccel -config comp_cfg myMfile

The -config option instructs fiaccel to convert myFile.m to a MEX
function, based on the compilation settings in comp_cfg.

Modifying Compilation Options at the Command Line
Using Dot Notation
Use dot notation to modify the value of compilation options, using this syntax:

8-29

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

configuration_object.property = value

Dot notation uses assignment statements to modify configuration object
properties. For example, to change the maximum size function to inline and
the stack size limit for inlined functions during MEX generation, enter this
code at the command line:

co_cfg = coder.MEXConfig
co_cfg.InlineThreshold = 25;
co_cfg.InlineStackLimit = 4096;
fiaccel -config co_cfg myFun

MEX Configuration Dialog Box Options
The following table describes parameters for fine-tuning the behavior of
fiaccel for converting MATLAB files to MEX:

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Report

Create code generation report GenerateReport
true, false

Document generated code in
an HTML report.

Launch report automatically LaunchReport
true, false

Specify whether to
automatically display HTML
reports after code generation
completes.

Note Requires that you
enable Create code
generation report

Debugging

Echo expressions without
semicolons

EchoExpressions
true, false

Specify whether or not actions
that do not terminate with
a semicolon appear in the
MATLAB Command Window.

8-30

Setting MEX Compilation Options

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Enable debug build EnableDebugging
true, false

Compile the generated code in
debug mode.

Language and Semantics

Constant Folding Timeout ConstantFoldingTimeout
integer, 10000

Specify the maximum number
of instructions to be executed
by the constant folder.

8-31

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Dynamic memory allocation DynamicMemoryAllocation
'off',
'AllVariableSizeArrays'

Enable dynamic memory
allocation for variable-size
data. By default, dynamic
memory allocation is disabled
and fiaccel allocates memory
statically on the stack. When
you select dynamic memory
allocation, fiaccel allocates
memory for all variable-size
data dynamically on the heap.

Youmust use dynamic memory
allocation for all unbounded
variable-size data.

Enable variable sizing EnableVariableSizing
true, false

Enable support for
variable-size arrays.

8-32

Setting MEX Compilation Options

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Extrinsic calls ExtrinsicCalls
true, false

Allow calls to extrinsic
functions.

When enabled (true), the
compiler generates code for the
call to a MATLAB function,
but does not generate the
function’s internal code.

When disabled (false), the
compiler ignores the extrinsic
function. Does not generate
code for the call to the
MATLAB function—as long
as the extrinsic function does
not affect the output of the
caller function. Otherwise,
the compiler issues a compiler
error.

8-33

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Global Data Synchronization
Mode

GlobalDataSyncMethod
string,SyncAlways,
SyncAtEntryAndExits,
NoSync

Controls when global data
is synchronized with the
MATLAB global workspace.
By default, (SyncAlways),
synchronizes global data
at MEX function entry and
exit and for all extrinsic
calls. This synchronization
ensures maximum consistency
between MATLAB and
generated code. If the
extrinsic calls do not affect
global data, use this option
with the coder.extrinsic
-sync:off option to turn off
synchronization for these calls.

SyncAtEntryAndExits
synchronizes global data
at MEX function entry
and exit only. If only a
few extrinsic calls affect
global data, use this option
with the coder.extrinsic
-sync:on option to turn on
synchronization for these calls.

NoSync disables
synchronization. Ensure that
your generated code does not
interact with MATLAB before
disabling synchronization.
Otherwise, inconsistencies
might occur.

8-34

Setting MEX Compilation Options

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Saturate on integer overflow SaturateOnIntegerOverflow
true, false

Add checks in the generated
code to detect integer overflow
or underflow.

Safety (disable for faster MEX)

Ensure memory integrity IntegrityChecks
true, false

Detects violations of memory
integrity in code generated
from MATLAB algorithms
and stops execution with a
diagnostic message. Setting
IntegrityChecks to false
also disables the run-time
stack.

Ensure responsiveness ResponsivenessChecks
true, false

Enables responsiveness
checks in code generated from
MATLAB algorithms.

Function Inlining and Stack Allocation

Inline Stack Limit InlineStackLimit
integer, 4000

Specify the stack size limit on
inlined functions.

Inline Threshold InlineThreshold
integer, 10

Specify the maximum size of
functions to be inlined.

Inline Threshold Max InlineThresholdMax
integer, 200

Specify the maximum size of
functions after inlining.

Stack Usage Max StackUsageMax
integer, 200000

Specify the maximum stack
usage per application in
bytes. Set a limit that is
lower than the available stack
size. Otherwise, a runtime
stack overflow might occur.
Overflows are detected and
reported by the C compiler, not
by fiaccel.

8-35

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Optimizations

Use BLAS library if possible EnableBLAS
true, false

Speed up low-level matrix
operations during simulation
by calling the Basic Linear
Algebra Subprograms (BLAS)
library.

See Also

• “Controlling Run-Time Checks” on page 8-73

• “How Working with Variable-Size Data Is Different for Code Generation”

• “Generating MEX Functions from MATLAB Code That Uses Global Data”
on page 8-58

How fiaccel Resolves Conflicting Options
fiaccel takes the union of all options, including those specified using
configuration objects, so that you can specify options in any order.

8-36

Specifying Properties of Primary Function Inputs

Specifying Properties of Primary Function Inputs

In this section...

“Why You Must Specify Input Properties” on page 8-37

“Properties to Specify” on page 8-37

“Rules for Specifying Properties of Primary Inputs” on page 8-40

“Methods for Defining Properties of Primary Inputs” on page 8-41

“Defining Input Properties by Example at the Command Line” on page 8-41

Why You Must Specify Input Properties
To generate code in a statically typed language, fiaccel must determine the
properties of all variables in the MATLAB code at compile time. Therefore,
you must specify the class, size, and complexity of inputs to the primary
function (also known as the top-level or entry-point function). If your primary
function has no input parameters, fiaccel can compile your MATLAB
algorithm without modification. You do not need to specify properties of
inputs to subfunctions or external functions called by the primary function.
For fiaccel requirements, refer to its reference page.

Properties to Specify
If your primary function has inputs, you must specify the following properties
for each input:

8-37

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Specify Properties:For:

Class Size Complexity numerictype fimath

Fixed-point
inputs

Structure
inputs*

(if structure
field is
fixed-point)

(if
structure
field is
fixed-point)

All other
inputs

* When a primary input is a structure, fiaccel treats each field as a separate
input.

Default Property Values
fiaccel assigns the following default values for properties of primary
function inputs:

Property Default

class double

size scalar

complexity real

numerictype No default

fimath MATLAB default fimath object

Specifying Default Values for Structure Fields. In most cases, fiaccel
uses defaults when you don’t explicitly specify values for properties—except
for structure fields. The only way to name a field in a structure is to set at
least one of its properties. Therefore, you may need to specify default values
for properties of structure fields. For examples, see “Example: Specifying
Class and Size of Scalar Structure” on page 8-70 and “Example: Specifying
Class and Size of Structure Array” on page 8-71.

8-38

Specifying Properties of Primary Function Inputs

Specifying Default fimath Values for MEX Functions. MEX functions
generated with fiaccel use the MATLAB default fimath. The MATLAB
factory default fimath has the following properties:

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

For more information, see Chapter 4, “Working with fimath Objects”.

When running MEX functions that depend on the MATLAB default fimath
value, do not change this value during your MATLAB session. Otherwise, you
receive a run-time error, alerting you to a mismatch between the compile-time
and run-time fimath values.

For example, suppose you define the following MATLAB function test:

function y = test %#codegen
y = fi(0);

The function test constructs a fi object without explicitly specifying a fimath
object. Therefore, test will rely on the default fimath object at compile time.
At the MATLAB prompt, generate the MEX function text_mex to use the
factory setting of the MATLAB default fimath:

fiaccel test
% fiaccel generates a MEX function, test_mex,
% in the current folder

Next, run test_mex to display the MATLAB default fimath value:

test_mex

ans =

0

DataTypeMode: Fixed-point: binary point scaling

8-39

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Signedness: Signed
WordLength: 16

FractionLength: 15

Supported Classes
The following table presents the class names supported by fiaccel:

Class Name Description

logical Logical array of true and false values

char Character array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

single Single-precision floating-point or
fixed-point number array

double Double-precision floating-point or
fixed-point number array

struct Structure array

embedded.fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs
Follow these rules when specifying the properties of primary inputs:

• For each primary function input whose class is fixed point (fi), you must
specify the input’s numerictype and fimath properties.

• For each primary function input whose class is struct, you must specify
the properties of each of its fields in the order that they appear in the
structure definition.

8-40

Specifying Properties of Primary Function Inputs

Methods for Defining Properties of Primary Inputs
You can use any of the following methods to define the properties of primary
function inputs:

Method Pros Cons

“Defining Input Properties
by Example at the Command
Line” on page 8-41

• Easy to use

• Does not alter original
MATLAB code

• Designed for prototyping a
function that has a small
number of primary inputs

• Must be specified at the
command line every time
you invoke fiaccel (unless
you use a script)

• Not efficient for specifying
memory-intensive inputs
such as large structures
and arrays

“Defining Input Properties
Programmatically in the
MATLAB File” on page 8-64

• Integrated with MATLAB
code so you do not need to
redefine properties each
time you invoke fiaccel

• Provides documentation of
property specifications in
the MATLAB code

• Efficient for specifying
memory-intensive inputs
such as large structures

• Uses complex syntax

Note To specify the properties of inputs for any given primary function, use
one of these methods or the other, but not both.

Defining Input Properties by Example at the
Command Line

• “Command Line Option -args” on page 8-42

• “Rules for using the -args option” on page 8-43

• “Specifying Constant Inputs” on page 8-44

8-41

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

• “Specifying Variable-Size Inputs” on page 8-45

Command Line Option -args
fiaccel provides a command-line option -args for specifying the properties
of primary function inputs as a cell array of example values. The cell array
can be a variable or literal array of constant values.

Example: Specifying Properties of Primary Inputs by Example.
Consider a function that adds its two inputs:

function y = emcf(u,v) %#codegen
% The directive %#codegen indicates that you
% intend to generate code for this algorithm
y = u + v;

The following examples show how to specify different properties of the
primary inputs u and v by example at the command line:

• Use a literal cell array of constants to specify that both inputs are real,
scalar, fixed-point values:

fiaccel -o emcfx emcf ...
-args {fi(0,1,16,15),fi(0,1,16,15)}

• Use a literal cell array of constants to specify that input u is an unsigned
16-bit, 1-by-4 vector and input v is a scalar, fixed-point value:

fiaccel -o emcfx emcf ...
-args {zeros(1,4,'uint16'),fi(0,1,16,15)}

• Assign sample values to a cell array variable to specify that both inputs are
real, unsigned 8-bit integer vectors:

a = fi([1;2;3;4],0,8,0)
b = fi([5;6;7;8],0,8,0)
ex = {a,b}
fiaccel -o emcfx emcf -args ex

Example: Specifying Properties of Primary Fixed-Point Inputs by
Example. Consider a function that calculates the square root of a fixed-point
number:

8-42

Specifying Properties of Primary Function Inputs

function y = sqrtfi(x) %#codegen
y = sqrt(x);

To specify the properties of the primary fixed-point input x by example on the
MATLAB command line, follow these steps:

1 Define the numerictype properties for x, as in this example:

T = numerictype('WordLength',32,...

'FractionLength',23,'Signed',true);

2 Define the fimath properties for x, as in this example:

F = fimath('SumMode','SpecifyPrecision',...

'SumWordLength',32,'SumFractionLength',23,...

'ProductMode','SpecifyPrecision', ...

ProductWordLength',32,'ProductFractionLength',23);

3 Create a fixed-point variable with the numerictype and fimath properties
you just defined, as in this example:

myeg = { fi(4.0,T,F) };

4 Compile the function sqrtfi using the fiaccel command, passing the
variable myeg as the argument to the-args option, as in this example:

fiaccel sqrtfi -args myeg;

Rules for using the -args option
Follow these rules when using the -args command-line option to define
properties by example:

• The cell array of sample values must contain the same number of elements
as primary function inputs.

• The order of elements in the cell array must correspond to the order in
which inputs appear in the primary function signature — for example, the
first element in the cell array defines the properties of the first primary
function input.

8-43

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Specifying Constant Inputs
In cases where you know your primary inputs will not change at run time,
you can specify them as constant values than as variables to eliminate
unnecessary overhead in generated code. Common uses of constant inputs are
for flags that control how an algorithm executes and values that specify the
sizes or types of data.

You can define inputs to be constants using this command-line option:

-args {coder.Constant(constant_input)}

This expression specifies that an input will be a constant with the size, class,
complexity, and value of constant_input.

Calling Functions with Constant Inputs. fiaccel compiles constant
function inputs into the generated code. As a result, the MEX function
signature differs from the MATLAB function signature. At run time you
supply the constant argument to the MATLAB function, but not to the MEX
function.

For example, consider the following function identity which copies its input
to its output:

function y = identity(u) %#codegen
y = u;

To generate a MEX function identity_mex with a constant input, type the
following command at the MATLAB prompt:

fiaccel -o identity_mex identity...
-args {coder.Constant(fi(0.1,1,16,15))}

To run the MATLAB function, supply the constant argument as follows:

identity(fi(0.1,1,16,15))

You get the following result:

ans =

0.1000

8-44

Specifying Properties of Primary Function Inputs

Now, try running the MEX function with this command:

identity_mex

You should get the same answer.

Example: Specifying a Structure as a Constant Input. Suppose you
define a structure tmp in the MATLAB workspace to specify the dimensions of
a matrix, as follows:

tmp = struct('rows', 2, 'cols', 3);

The following MATLAB function rowcol accepts a structure input p to define
matrix y:

function y = rowcol(u,p) %#codegen
y = fi(zeros(p.rows,p.cols),1,16,15) + u;

The following example shows how to specify that primary input u is a double
scalar variable and primary input p is a constant structure:

fiaccel rowcol ...
-args {fi(0,1,16,15),coder.Constant(tmp)}

To run this code, use

u = fi(0.5,1,16,15)
y_m = rowcol(u,tmp)

y_mex = rowcol_mex(u)

Specifying Variable-Size Inputs
Variable-size data is data whose size might change at run time. MATLAB
supports bounded and unbounded variable-size data for code generation.

• Bounded variable-size data has fixed upper bounds; this data can be
allocated statically on the stack or dynamically on the heap.

• Unbounded variable-size data does not have fixed upper bounds; this data
must be allocated on the heap.

8-45

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

You can define inputs to have one or more variable-size dimensions and
specify their upper bounds using the -args option:

Expression Description

8-46

Specifying Properties of Primary Function Inputs

Expression Description

-args {coder.typeof(example_value, size_vector,
dim_vector)}

Specifies a variable-size input
with:

• Same class and complexity as
example_value

• Same size and upper bounds
as size_vector

dim_vector specifies which
dimensions are variable. A
value of true or one means that
the corresponding dimension is
variable. A value of false or zero
means that the corresponding
dimension is fixed.

Example: Specifying a Variable-Size Vector Input.

1 Write a function that computes the sum of every n elements of a vector A
and stores them in a vector B:

function B = nway(A,n) %#codegen
% Compute sum of every N elements of A and put them in B.

coder.extrinsic('error');
Tb = numerictype(1,32,24);
if ((mod(numberofelements(A),n) == 0) && ...

(n>=1 && n<=numberofelements(A)))
B = fi(zeros(1,numberofelements(A)/n),Tb);
k = 1;
for i = 1 : numberofelements(A)/n

B(i) = sum(A(k + (0:n-1)));
k = k + n;

end
else

B = fi(zeros(1,0),Tb);
error('n<=0 or does not divide evenly');

8-47

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

end

2 Specify the first input A as a fi object. Its first dimension stays fixed in
size and its second dimension can grow to an upper bound of 100. Specify
the second input n as a double scalar.

fiaccel nway ...
-args {coder.typeof(fi(0,1,16,15),[1 100],1),0}...
-report

Note You do not need to explicitly cast these inputs as double because
fiaccel assumes the default properties of inputs are real, double scalars.

3 As an alternative, assign the coder.typeof expression to a MATLAB
variable, then pass the variable as an argument to -args:

vareg = coder.typeof(fi(0,1,16,15),[1 100],1)
fiaccel nway -args {vareg, double(0)}

Note For comparison, this command does explicitly cast the inputs to
double.

8-48

Best Practices for Accelerating Fixed-Point MATLAB Code

Best Practices for Accelerating Fixed-Point MATLAB Code

In this section...

“Recommended Compilation Options for fiaccel” on page 8-49

“Using Build Scripts” on page 8-50

“Using the MATLAB Code Analyzer to Check Code Interactively at Design
Time” on page 8-51

“Separating Your Test Bench from Your Function Code” on page 8-52

“Preserving Your Code” on page 8-52

“File Naming Conventions” on page 8-52

Recommended Compilation Options for fiaccel

• -args – Specify input parameters by example

Use the -args option to specify the properties of primary function inputs as
a cell array of example values at the same time as you generate code for
the MATLAB file with fiaccel. The cell array can be a variable or literal
array of constant values. The cell array should provide the same number
and order of inputs as the primary function.

When you use the -args option you are specifying the data types and array
dimensions of these parameters, not the values of the variables. For more
information, see “Defining Input Properties by Example at the Command
Line” in the MATLAB Coder documentation.

Note Alternatively, you can use the assert function to define properties
of primary function inputs directly in your MATLAB file. For more
information, see “Defining Input Properties Programmatically in the
MATLAB File” on page 8-64.

• -report – Generate code generation report

Use the -report option to generate a report in HTML format at code
generation time to help you debug your MATLAB code and verify that it

8-49

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

is suitable for code generation. If you do not specify the -report option,
fiaccel generates a report only if build errors or warnings occur.

The code generation report contains the following information:

- Summary of code generation results, including type of target and
number of warnings or errors

- Target build log that records build and linking activities

- Links to generated files

- Error and warning messages (if any)

For more information, see fiaccel.

Using Build Scripts
Use build scripts to call fiaccel to generate MEX functions from your
MATLAB function.

A build script automates a series of MATLAB commands that you want to
perform repeatedly from the command line, saving you time and eliminating
input errors. For instance, you can use a build script to clear your workspace
before each build and to specify code generation options.

This example shows a build script to run fiaccel to process lms_02.m:

close all;
clear all;
clc;

N = 73113;

fiaccel -report lms_02.m ...
-args { zeros(N,1) zeros(N,1) }

In this example, the following actions occur:

• close all deletes all figures whose handles are not hidden. See close in
the MATLAB Graphics function reference for more information.

8-50

Best Practices for Accelerating Fixed-Point MATLAB Code

• clear all removes all variables, functions, and MEX-files from memory,
leaving the workspace empty. This command also clears all breakpoints.

Note Remove the clear all command from the build scripts if you want
to preserve breakpoints for debugging.

• clc clears all input and output from the Command Window display, giving
you a “clean screen.”

• N = 73113 sets the value of the variable N, which represents the number of
samples in each of the two input parameters for the function lms_02

• fiaccel -report lms_02.m -args { zeros(N,1) zeros(N,1) } calls
fiaccel to accelerate simulation of the file lms_02.m using the following
options:

- -report generates a code generation report

- -args { zeros(N,1) zeros(N,1) } specifies the properties of the
function inputs as a cell array of example values. In this case, the input
parameters are N-by-1 vectors of real doubles.

Using the MATLAB Code Analyzer to Check Code
Interactively at Design Time
The code analyzer checks your code for problems and recommends
modifications to maximize performance and maintainability. You can use
the code analyzer to check your code continuously in the MATLAB Editor
while you work.

To ensure that continuous code checking is enabled:

1 From the MATLAB menu, select File > Preferences > Code Analyzer.

The list of code analyzer preferences appears.

2 Select the Enable integrated warning and error messages check box.

8-51

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Separating Your Test Bench from Your Function Code
Separate your core algorithm from your test bench. Create a separate test
script to do all the pre- and post-processing such as loading inputs, setting
up input values, calling the function under test, and outputting test results.
See the example on the fiaccel reference page.

Preserving Your Code
Preserve your code before making further modifications. This practice
provides a fallback in case of error and a baseline for testing and validation.
Use a consistent file naming convention, as described in “File Naming
Conventions” on page 8-52. For example, add a 2-digit suffix to the file name
for each file in a sequence. Alternatively, use a version control system.

File Naming Conventions
Use a consistent file naming convention to identify different types and
versions of your MATLAB files. This approach keeps your files organized
and minimizes the risk of overwriting existing files or creating two files with
the same name in different folders.

For example, the file naming convention in the Generating MEX Functions
getting started tutorial is:

• The suffix _build identifies a build script.

• The suffix _test identifies a test script.

• A numerical suffix, for example, _01 identifies the version of a file. These
numbers are typically two-digit sequential integers, beginning with 01,
02, 03, and so on.

For example:

• The file build_01.m is the first version of the build script for this tutorial.

• The file test_03.m is the third version of the test script for this tutorial.

8-52

Working with Fixed-Point Code Generation Reports

Working with Fixed-Point Code Generation Reports

In this section...

“Generating the Code Generation Report” on page 8-53

“Opening the Code Generation Report” on page 8-54

“Viewing Your MATLAB Code” on page 8-54

“Viewing Variables in the Variables Tab” on page 8-56

“See Also” on page 8-57

Generating the Code Generation Report
When you compile your code with the fiaccel function or the MATLAB
Coder codegen function, you can use the -report option to generate a code
generation report. This report allows you to examine the data types of the
variables and expressions in your code.

To see an example of the code generation report generated by the fiaccel
function, compile cordic_atan_kernel.m. This file ships as a part of the
Fixed-Point ATAN2 Calculation demo. You can open the file by typing the
following at the MATLAB command line:

open cordic_atan_kernel

To compile the cordic_atan_kernel file, you must provide inputs x, y, N, and
angleLUT. This example uses the following input values:

x = fi(0.23);
y = x;
N = 12;
Tz = numerictype(1,16,13);
angleLUT = fi(atan(2.^-(0:N-1)), 'NumericType', Tz);

After you define the input variables in the MATLAB workspace, change your
working folder to a local folder and compile the file using fiaccel. Use the
-report option to generate the code generation report:

fiaccel cordic_atan_kernel -args {x,y,N,angleLUT} -report

8-53

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Opening the Code Generation Report
If the compilation is successful, you receive the following message:

Code generation successful: View report

Click the View report link to view the report.

If the compilation fails, a link to the error report appears:

Code generation failed: View report

Click the View report link to view the error report and debug your code.
For more information on working with error reports, see “Code Generation
Reports” in the MATLAB Coder documentation.

Viewing Your MATLAB Code
When the code generation report opens, you can hover your cursor over the
variables and expressions in your MATLAB code to see their data type
information. The code generation report provides color-coded data type
information according to the following legend.

Color Meaning

Green Data type information is available for the
selected variable at this location in the code.

Orange There is a warning message associated with
the selected variable or expression.

Pink No data type information is available for the
selected variable.

Purple Data type information is available for the
selected expression at this location in the
code.

Red There is an error message associated with the
selected variable or expression.

Variables in your code that have data type information available appear
highlighted in green, as shown in the following figure.

8-54

Working with Fixed-Point Code Generation Reports

Expressions in your code that have data type information available appear
highlighted in purple, as the next figure shows.

8-55

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Viewing Variables in the Variables Tab
To see the data type information for all the variables in your file, click the
Variables tab of the code generation report. You can expand all fi and
fimath objects listed in the Variables tab to display the fimath properties.
When you expand a fi object in the Variables tab, the report indicates
whether the fi object has a local fimath object or is using default fimath
values.

The following figure shows the information displayed for a fi object that is
using default fimath values.

8-56

Working with Fixed-Point Code Generation Reports

You can sort the variables by clicking the column headings in the Variables
tab. To sort the variables by multiple columns, press the Shift key while
clicking the column headings.

See Also
For more information about using the code generation report with the
fiaccel function, see the fiaccel reference page.

For information about local and default fimath, see Chapter 4, “Working
with fimath Objects”.

For information about using the code generation report with the
codegen function, see “Code Generation Reports” in the MATLAB Coder
documentation.

8-57

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Generating MEX Functions from MATLAB Code That Uses
Global Data

In this section...

“Workflow Overview” on page 8-58

“Declaring Global Variables” on page 8-58

“Defining Global Data” on page 8-59

“Synchronizing Global Data with MATLAB” on page 8-60

“Limitations of Using Global Data” on page 8-63

Workflow Overview
To generate MEX functions from MATLAB code that uses global data:

1 Declare the variables as global in your code.

2 Define and initialize the global data before using it.

For more information, see “Defining Global Data” on page 8-59.

3 Compile your code using fiaccel.

If you use global data, you must also specify whether you want to synchronize
this data between MATLAB and the generated code. If there is no
interaction between MATLAB and the generated code, it is safe to disable
synchronization. Otherwise, you should enable synchronization. For more
information, see “Synchronizing Global Data with MATLAB” on page 8-60.

Declaring Global Variables
For code generation, you must declare global variables before using them in
your MATLAB code. Consider the use_globals function that uses two global
variables AR and B.

function y = use_globals()
%#codegen
% Turn off inlining to make

8-58

Generating MEX Functions from MATLAB® Code That Uses Global Data

% generated code easier to read
coder.inline('never');
% Declare AR and B as global variables
global AR;
global B;
AR(1) = B(1);
y = AR * 2;

Defining Global Data
You can define global data either in the MATLAB global workspace or at
the command line. If you do not initialize global data at the command line,
fiaccel looks for the variable in the MATLAB global workspace. If the
variable does not exist, fiaccel generates an error.

Defining Global Data in the MATLAB Global Workspace
To compile the use_globals function described in “Declaring Global
Variables” on page 8-58 using fiaccel:

1 Define the global data in the MATLAB workspace. At the MATLAB
prompt, enter:

global AR B;
AR = fi(ones(4),1,16,14);
B = fi([1 2 3],1,16,13);

2 Compile the function to generate a MEX file named use_globalsx.

fiaccel -o use_globalsx use_globals

Defining Global Data at the Command Line
To define global data at the command line, use the fiaccel -global option.
For example, to compile the use_globals function described in “Declaring
Global Variables” on page 8-58, specify two global inputs AR and B at the
command line.

fiaccel -o use_globalsx ...
-global {'AR',fi(ones(4)),'B',fi([1 2 3])} use_globals

8-59

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Alternatively, specify the type and initial value with the -globals flag using
the format -globals {'g', {type, initial_value}}.

Defining Variable-Sized Global Data. To provide initial values for
variable-sized global data, specify the type and initial value with the
-globals flag using the format -globals {'g', {type, initial_value}}.
For example, to specify a global variable g1 that has an initial value [1 1]
and upper bound [2 2], enter:

fiaccel foo -globals {'g1',{coder.typeof(0,[2 2],1),[1 1]}}

For a detailed explanation of coder.typeof syntax, see coder.typeof.

Synchronizing Global Data with MATLAB

Why Synchronize Global Data?
The generated code and MATLAB each have their own copies of global data.
To ensure consistency, you must synchronize their global data whenever the
two interact. If you do not synchronize the data, their global variables might
differ. The level of interaction determines when to synchronize global data.

When to Synchronize Global Data
By default, synchronization between global data in MATLAB and generated
code occurs at MEX function entry and exit and for all extrinsic calls, which
are calls to MATLAB functions on the MATLAB path that fiaccel dispatches
to MATLAB for execution. This behavior ensures maximum consistency
between generated code and MATLAB.

To improve performance, you can:

• Select to synchronize only at MEX function entry and exit points.

• Disable synchronization when the global data does not interact.

• Choose whether to synchronize before and after each extrinsic call.

The following table summarizes which global data synchronization options
to use. To learn how to set these options, see “How to Synchronize Global
Data” on page 8-61.

8-60

Generating MEX Functions from MATLAB® Code That Uses Global Data

Global Data Synchronization Options

If you want to... Set the
global data
synchronization
mode to:

Synchronize before
and after extrinsic
calls?

Ensure maximum
consistency when all
extrinsic calls modify global
data.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Default behavior.

Ensure maximum
consistency when most
extrinsic calls modify global
data, but a few do not.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Use the
coder.extrinsic
-sync:off option to
turn off synchronization
for the extrinsic calls that
do not affect global data.

Ensure maximum
consistency when most
extrinsic calls do not modify
global data, but a few do.

At MEX-function
entry and exit

Yes. Use the
coder.extrinsic
-sync:on option to
synchronize only the calls
that modify global data

Maximize performance
when synchronizing global
data, and none of your
extrinsic calls modify global
data.

At MEX-function
entry and exit

No.

Communicate between
generated code files only.
No interaction between
global data in MATLAB
and generated code.

Disabled No.

How to Synchronize Global Data
To control global data synchronization, set the global data synchronization
mode and select whether to synchronize extrinsic functions. For guidelines on
which options to use, see “When to Synchronize Global Data” on page 8-60.

8-61

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

You control the synchronization of global data with extrinsic functions using
the coder.extrinsic -sync:on and -sync:off options.

Controlling the Global Data Synchronization Mode from the
Command Line.

1 Define the compiler options object in the MATLAB workspace by issuing a
constructor command:

comp_cfg = coder.mexconfig

2 From the command line, set the GlobalDataSyncMethod property to
Always, SyncAtEntryAndExits or NoSync, as applicable. For example:

comp_cfg.GlobalDataSyncMethod = 'SyncAtEntryAndExits';

3 Use the comp_cfg configuration object when compiling your code by
specifying it using the -config compilation option. For example,

fiaccel -config comp_cfg myFile

Controlling Synchronization for Extrinsic Function Calls. You can
control whether synchronization between global data in MATLAB and
generated code occurs before and after you call an extrinsic function. To do so,
use the coder.extrinsic -sync:on and -sync:off options.

By default, global data is:

• Synchronized before and after each extrinsic call if the global data
synchronization mode is At MEX-function entry, exit and extrinsic
calls. If you are sure that certain extrinsic calls do not affect global
data, turn off synchronization for these calls using the -sync:off option.
Turning off synchronization improves performance. For example, if
functions foo1 and foo2 do not affect global data, turn off synchronization
for these functions:

coder.extrinsic('-sync:off', 'foo1', 'foo2');

• Not synchronized if the global data synchronization mode is At
MEX-function entry and exit. If the code has a few extrinsic calls
that affect global data, turn on synchronization for these calls using the

8-62

Generating MEX Functions from MATLAB® Code That Uses Global Data

-sync:on option. For example, if functions foo1 and foo2 do affect global
data, turn on synchronization for these functions:

coder.extrinsic('-sync:on', 'foo1', 'foo2');

• Not synchronized if the global data synchronization mode is Disabled.
When synchronization is disabled, you cannot control the synchronization
for specific extrinsic calls. The -sync:on option has no effect.

Limitations of Using Global Data
You cannot use global data with

• The coder.cstructname function. This function does not support global
variables.

• The coder.varsize function. Instead, use a coder.typeof object to define
variable-sized global data as described in “Defining Variable-Sized Global
Data” on page 8-60.

8-63

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Defining Input Properties Programmatically in the MATLAB
File

In this section...

“How to Use assert with fiaccel” on page 8-64

“Rules for Using assert Function” on page 8-69

“Example: Specifying Properties of Primary Fixed-Point Inputs” on page
8-69

“Example: Specifying Class and Size of Scalar Structure” on page 8-70

“Example: Specifying Class and Size of Structure Array” on page 8-71

How to Use assert with fiaccel
You can use the MATLAB assert function to define properties of primary
function inputs directly in your MATLAB file.

Use the assert function to invoke standard MATLAB functions for specifying
the class, size, and complexity of primary function inputs.

Specify Any Class

assert (isa (param, 'class_name'))

Sets the input parameter param to the MATLAB class class_name. For
example, to set the class of input U to a 32-bit signed integer, call:

...
assert(isa(U,'embedded.fi'));
...

8-64

Defining Input Properties Programmatically in the MATLAB® File

Note If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 8-67.
You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 8-68. If you do not set the fimath properties, fiaccel uses
the MATLAB default fimath value.

If you set the class of an input parameter to struct, you must specify the
properties of each field in the structure in the order in which you define the
fields in the structure definition.

Specify fi Class

assert (isfi (param))
assert (isa (param, 'embedded.fi'))

Sets the input parameter param to the MATLAB class fi (fixed-point numeric
object). For example, to set the class of input U to fi, call:

...
assert(isfi(U));
...

or

...
assert(isa(U,'embedded.fi'));
...

Note If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 8-67.
You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 8-68. If you do not set the fimath properties, fiaccel uses
the MATLAB default fimath value.

8-65

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Specify Structure Class

assert (isstruct (param))

Sets the input parameter param to the MATLAB class struct (structure). For
example, to set the class of input U to a struct, call:

...
assert(isstruct(U));
...

or

...
assert(isa(U,'struct'));
...

Note If you set the class of an input parameter to struct, you must specify
the properties of each field in the structure in the order in which you define
the fields in the structure definition.

Specify Any Size

assert (all (size (param) == [dims]))

Sets the input parameter param to the size specified by dimensions dims. For
example, to set the size of input U to a 3-by-2 matrix, call:

...
assert(all(size(U)== [3 2]));
...

Specify Scalar Size

assert (isscalar (param))
assert (all (size (param) == [1]))

Sets the size of input parameter param to scalar. For example, to set the
size of input U to scalar, call:

8-66

Defining Input Properties Programmatically in the MATLAB® File

...
assert(isscalar(U));
...

or

...
assert(all(size(U)== [1]));
...

Specify Real Input

assert (isreal (param))

Specifies that the input parameter param is real. For example, to specify
that input U is real, call:

...
assert(isreal(U));
...

Specify Complex Input

assert (~isreal (param))

Specifies that the input parameter param is complex. For example, to specify
that input U is complex, call:

...
assert(~isreal(U));
...

Specify numerictype of Fixed-Point Input

assert (isequal (numerictype (fiparam), T))

Sets the numerictype properties of fi input parameter fiparam to the
numerictype object T. For example, to specify the numerictype property of

8-67

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

fixed-point input U as a signed numerictype object T with 32-bit word length
and 30-bit fraction length, use the following code:

...
% Define the numerictype object.
T = numerictype(1, 32, 30);

% Set the numerictype property of input U to T.
assert(isequal(numerictype(U),T));
...

Specify fimath of Fixed-Point Input

assert (isequal (fimath (fiparam), F))

Sets the fimath properties of fi input parameter fiparam to the fimath
object F. For example, to specify the fimath property of fixed-point input U so
that it saturates on integer overflow, use the following code:

...
% Define the fimath object.
F = fimath('OverflowMode','saturate');

% Set the fimath property of input U to F.
assert(isequal(fimath(U),F));
...

Note If you do not specify the fimath properties using assert, fiaccel uses
the MATLAB default fimath value.

Specify Multiple Properties of Input

assert (function1 (params) && function2 (params) && function3 (params) && ...)

Specifies the class, size, and complexity of one or more inputs using a single
assert function call. For example, the following code specifies that input U is
a double, complex, 3-by-3 matrix, and input V is a 16-bit unsigned integer:

8-68

Defining Input Properties Programmatically in the MATLAB® File

...

assert(isa(U,'double') && ~isreal(U) && all(size(U) == [3 3]) && isa(V,'uint16'));

...

Rules for Using assert Function
Follow these rules when using the assert function to specify the properties
of primary function inputs:

• Call assert functions at the beginning of the primary function, before any
flow-control operations such as if statements or subroutine calls.

• Do not call assert functions inside conditional constructs, such as if, for,
while, and switch statements.

• Use the assert function with fiaccel only for specifying properties of
primary function inputs before converting your MATLAB code to MEX code.

• If you set the class of an input parameter to fi:

- You must also set its numerictype, see “Specify numerictype of
Fixed-Point Input” on page 8-67.

- You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 8-68. If you do not set the fimath properties, fiaccel
uses the MATLAB default fimath value.

• If you set the class of an input parameter to struct, you must specify the
class, size, and complexity of each field in the structure in the order in
which you define the fields in the structure definition.

Example: Specifying Properties of Primary
Fixed-Point Inputs
In the following example, the primary MATLAB function emcsqrtfi takes one
fixed-point input: x. The code specifies the following properties for this input:

Property Value

class fi

numerictype numerictype object T, as specified in the
primary function

8-69

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Property Value

fimath fimath object F, as specified in the primary
function

size scalar (by default)

complexity real (by default)

function y = emcsqrtfi(x)
T = numerictype('WordLength',32,'FractionLength',23,...

'Signed',true);
F = fimath('SumMode','SpecifyPrecision',...

'SumWordLength',32,'SumFractionLength',23,...
'ProductMode','SpecifyPrecision',...
'ProductWordLength',32,'ProductFractionLength',23);

assert(isfi(x));
assert(isequal(numerictype(x),T));
assert(isequal(fimath(x),F));

y = sqrt(x);

Example: Specifying Class and Size of Scalar
Structure
Assume you have defined S as the following scalar MATLAB structure:

S = struct('r',double(1),'i',fi(4,true,8,0));

This code specifies the class and size of S and its fields when passed as an
input to your MATLAB function:

function y = fcn(S)

% Specify the class of the input as struct.
assert(isstruct(S));

% Specify the size of the fields r and i
% in the order in which you defined them.
T = numerictype('Wordlength', 8,'FractionLength', ...

0,'signed',true);
assert(isa(S.r,'double'));

8-70

Defining Input Properties Programmatically in the MATLAB® File

assert(isfi(S.i) && isequal(numerictype(S.i),T));

y = S;

Note In most cases, fiaccel uses defaults when you do not explicitly specify
values for properties—except for structure fields. The only way to name a
field in a structure is to set at least one of its properties. Therefore in the
preceding example, an assert function specifies that field S.r is of type
double, even though double is the default.

Example: Specifying Class and Size of Structure
Array
For structure arrays, you must choose a representative element of the array
for specifying the properties of each field. For example, assume you have
defined S as the following 1-by-2 array of MATLAB structures:

S = struct('r',{double(1), double(2)},'i',...
{fi(4,1,8,0), fi(5,1,8,0)});

The following code specifies the class and size of each field of structure input S
using the first element of the array:

function y = fcn(S)

% Specify the class of the input S as struct.
assert(isstruct(S));
T = numerictype('Wordlength', 8,'FractionLength', ...

0,'signed',true);

% Specify the size of the fields r and i
% based on the first element of the array.
assert(all(size(S) == [1 2]));
assert(isa(S(1).r,'double'));
assert(isfi(S(1).i) && isequal(numerictype(S(1).i),T));

y = S;

8-71

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Note In most cases, fiaccel uses defaults when you don’t explicitly specify
values for properties — except for structure fields. The only way to name a
field in a structure is to set at least one of its properties. Therefore in the
example above, an assert function specifies that field S(1).r is of type
double, even though double is the default.

8-72

Controlling Run-Time Checks

Controlling Run-Time Checks

In this section...

“Types of Run-Time Checks” on page 8-73

“When to Disable Run-Time Checks” on page 8-74

“How to Disable Run-Time Checks” on page 8-74

Types of Run-Time Checks
In simulation, the code generated for your MATLAB functions includes the
following run-time checks and external function calls.

• Memory integrity checks

These checks detect violations of memory integrity in code generated for
MATLAB functions and stop execution with a diagnostic message.

Caution For safety, these checks are enabled by default. Without memory
integrity checks, violations will result in unpredictable behavior.

• Responsiveness checks in code generated for MATLAB functions

These checks enable periodic checks for Ctrl+C breaks in code generated
for MATLAB functions. Enabling responsiveness checks also enables
graphics refreshing.

Caution For safety, these checks are enabled by default. Without these
checks the only way to end a long-running execution might be to terminate
MATLAB.

• Extrinsic calls to MATLAB functions

Extrinsic calls to MATLAB functions, for example to display results,
are enabled by default for debugging purposes. For more information

8-73

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

about extrinsic functions, see “Declaring MATLAB Functions as Extrinsic
Functions”.

When to Disable Run-Time Checks
Generally, generating code with run-time checks enabled results in more
generated code and slower simulation than generating code with the checks
disabled. Similarly, extrinsic calls are time consuming and have an adverse
effect on performance. Disabling run-time checks and extrinsic calls usually
results in streamlined generated code and faster simulation, with these
caveats:

Consider disabling... Only if...

Memory integrity checks You are sure that your code is
safe and that all array bounds and
dimension checking is unnecessary.

Responsiveness checks You are sure that you will not need
to stop execution of your application
using Ctrl+C.

Extrinsic calls You are only using extrinsic calls
to functions that do not affect
application results.

How to Disable Run-Time Checks
To disable run-time checks:

1 Define the compiler options object in the MATLAB workspace by issuing a
constructor command:

comp_cfg = coder.MEXConfig

2 From the command line set the IntegrityChecks, ExtrinsicCalls, or
ResponsivenessChecks properties false, as applicable:

comp_cfg.IntegrityChecks = false;
comp_cfg.ExtrinsicCalls = false;

8-74

Controlling Run-Time Checks

comp_cfg.ResponsivenessChecks = false;

8-75

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

MATLAB Coder
MATLAB Coder codegen automatically converts MATLAB code directly to C
code. It generates standalone C code that is bit-true to fixed-point MATLAB
code. Using Fixed-Point Toolbox software you can generate C code with
algorithms containing integer math only (i.e., without any floating-point
math). For more information, refer to the MATLAB Coder User’s Guide.

8-76

MATLAB Function Block

MATLAB Function Block

In this section...

“Composing a MATLAB Language Function in a Simulink Model” on page
8-77

“Using the MATLAB Function Block with Data Type Override” on page 8-77

“Using Fixed-Point Data Types with the MATLAB Function Block” on page
8-79

“Example: Implementing a Fixed-Point Direct Form FIR Using the
MATLAB Function Block” on page 8-85

Composing a MATLAB Language Function in a
Simulink Model
The MATLAB Function block lets you compose a MATLAB language function
in a Simulink model that generates embeddable code. When you simulate the
model or generate code for a target environment, a function in a MATLAB
Function block generates efficient C/C++ code. This code meets the strict
memory and data type requirements of embedded target environments. In
this way, the MATLAB Function blocks bring the power of MATLAB for the
embedded environment into Simulink.

For more information about the MATLAB Function block and code generation,
refer to the followingn:

• MATLAB Function block reference page in the Simulink documentation

• “Using the MATLAB Function Block” in the Simulink documentation

• “About Code Generation from MATLAB Algorithms” in the Code
Generation from MATLAB documentation

Using the MATLAB Function Block with Data Type
Override
When you use the MATLAB Function block in a Simulink model that specifies
data type override, the block determines the data type override equivalents of
the input signal and parameter types. The block then uses these equivalent

8-77

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

values to run the simulation. The following table shows how the MATLAB
Function block determines the data type override equivalent using

• The data type of the input signal or parameter

• The data type override setting in the Simulink model

Note The MATLAB Function block does not support the Scaled double
data type override setting.

Input Signal or
Parameter Type

Data Type Override
Setting

Data Type Override
Equivalent

Double fi doubleInherited single

Single fi single

Double Built-in doubleSpecified single

Single Built-in single

Double fi doubleInherited double

Single fi single

Double Built-in doubleSpecified double

Single Built-in single

Double fi doubleInherited Fixed

Single fi single

Double fi doubleSpecified Fixed

Single fi single

For more information about using the MATLAB Function block with data
type override, see the following section of the Simulink documentation:

“Using Data Type Override with the MATLAB Function Block”

8-78

MATLAB Function Block

Using Fixed-Point Data Types with the MATLAB
Function Block
Code generation from MATLAB supports a significant number of Fixed-Point
Toolbox functions. Refer to “Functions Supported for Code Acceleration and
Code Generation from MATLAB” on page 8-5 for information about which
Fixed-Point Toolbox functions are supported.

For more information on working with fixed-point MATLAB Function blocks,
see:

• “Specifying Fixed-Point Parameters in the Model Explorer” on page 8-79

• “Using fimath Objects in MATLAB Function Blocks” on page 8-81

• “Sharing Models with Fixed-Point MATLAB Function Blocks” on page 8-83

Note To simulate models using fixed-point data types in Simulink, you must
have a Simulink Fixed Point license.

Specifying Fixed-Point Parameters in the Model Explorer
You can specify parameters for an MATLAB Function block in a fixed-point
model using the Model Explorer. Try the following exercise:

1 Place a MATLAB Function block in a new model. You can find the block in
the Simulink User-Defined Functions library.

2 Open the Model Explorer by selecting View > Model Explorer from your
model.

3 Expand the untitled* node in the Model Hierarchy pane of the Model
Explorer. Then, select the MATLAB Function node. The Model Explorer
now appears as shown in the following figure.

8-79

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

The following parameters in the Dialog pane apply to MATLAB Function
blocks in models that use fixed-point and integer data types:

Treat these inherited Simulink signal types as fi objects
Choose whether to treat inherited fixed-point and integer signals as
fi objects.

• When you select Fixed-point, the MATLAB Function block treats
all fixed-point inputs as Fixed-Point Toolbox fi objects.

• When you select Fixed-Point & Integer, the MATLAB Function
block treats all fixed-point and integer inputs as Fixed-Point Toolbox
fi objects.

MATLAB Function block fimath
Specify the fimath properties for the block to associate with the
following objects:

• All fixed-point and integer input signals to the MATLAB Function
block that you choose to treat as fi objects.

• All fi and fimath objects constructed in the MATLAB Function block.

8-80

MATLAB Function Block

You can select one of the following options for theMATLAB Function
block fimath:

• Same as MATLAB — When you select this option, the block uses
the same fimath properties as the current default fimath. The edit
box appears dimmed and displays the current default fimath in
read-only form.

• Specify other — When you select this option, you can specify your
own fimath object in the edit box.

For more information on these parameters, see “Using fimath Objects in
MATLAB Function Blocks” on page 8-81.

Using fimath Objects in MATLAB Function Blocks
TheMATLAB Function block fimath parameter enables you to specify one
set of fimath object properties for the MATLAB Function block. The block
associates the fimath properties you specify with the following objects:

• All fixed-point and integer input signals to the MATLAB Function block
that you choose to treat as fi objects.

• All fi and fimath objects constructed in the MATLAB Function block.

You can set these parameters on the following dialog box, which you can
access through either the Model Explorer or the “Ports and Data Manager”.

8-81

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

8-82

MATLAB Function Block

• To access this pane through the Model Explorer:

- Select View > Model Explorer from your model menu.

- Then, select the MATLAB Function block from the Model Hierarchy
pane on the left side of the Model Explorer.

• To access this pane through the Ports and Data Manager, select Tools >
Edit Data/Ports from the MATLAB Editor menu.

When you select Same as MATLAB for the MATLAB Function block
fimath, the MATLAB Function block uses the current default fimath. The
current default fimath appears dimmed and in read-only form in the edit box.

When you select Specify other the block allows you to specify your own
fimath object in the edit box. You can do so in one of two ways:

• Constructing the fimath object inside the edit box.

• Constructing the fimath object in the MATLAB or model workspace and
then entering its variable name in the edit box.

Note If you use this option and plan to share your model with others,
make sure you define the variable in the model workspace. See “Sharing
Models with Fixed-Point MATLAB Function Blocks” on page 8-83 for more
information on sharing models.

The Fixed-Point Toolbox isfimathlocal function supports code generation
for MATLAB.

Sharing Models with Fixed-Point MATLAB Function Blocks
When you collaborate with a coworker, you can share a fixed-point model
using the MATLAB Function block. To share a model, make sure that you
move any variables you define in the MATLAB workspace, including fimath
objects, to the model workspace. For example, try the following:

1 Place a MATLAB Function block in a new model. You can find the block in
the Simulink User-Defined Functions library.

8-83

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

2 Define a fimath object in the MATLAB workspace that you want to use for any
Simulink fixed-point signal entering the MATLAB Function block as an input:

F = fimath('RoundMode','Floor','OverflowMode','Wrap',...
'ProductMode','KeepLSB','ProductWordLength',32,...
'SumMode','KeepLSB','SumWordLength',32)

F =
RoundMode: floor

OverflowMode: wrap
ProductMode: KeepLSB

ProductWordLength: 32
SumMode: KeepLSB

SumWordLength: 32
CastBeforeSum: true

3 Open the Model Explorer by selecting View > Model Explorer from your
model.

4 Expand the untitled* node in the Model Hierarchy pane of the Model
Explorer, and select the MATLAB Function node.

5 Select Specify other for theMATLAB Function block fimath parameter
and enter the variable F into the edit box on the Dialog pane. Click Apply
to save your changes.

You have now defined the fimath properties to be associated with all
Simulink fixed-point input signals and all fi and fimath objects constructed
within the block.

6 Select the Base Workspace node in theModel Hierarchy pane. You can see
the variable F that you have defined in the MATLAB workspace listed in the
Contents pane. If you send this model to a coworker, that coworker must first
define that same variable in the MATLAB workspace to get the same results.

7 Cut the variable F from the base workspace, and paste it into the model
workspace listed under the node for your model, in this case, untitled*. The
Model Explorer now appears as shown in the following figure.

8-84

MATLAB Function Block

You can now email your model to a coworker. Because you included the
required variables in the workspace of the model itself, your coworker can
simply run the model and get the correct results. Receiving and running the
model does not require any extra steps.

Example: Implementing a Fixed-Point Direct Form
FIR Using the MATLAB Function Block
The following sections lead you through creating a fixed-point, low-pass, direct
form FIR filter in Simulink. To create the FIR filter, you use Fixed-Point
Toolbox software and the MATLAB Function block. In this example, you
perform the following tasks in the sequence shown:

• “Program the MATLAB Function Block” on page 8-86

• “Prepare the Inputs” on page 8-86

• “Create the Model” on page 8-87

• “Define the fimath Object Using the Model Explorer” on page 8-92

• “Run the Simulation” on page 8-92

8-85

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Program the MATLAB Function Block

1 Place a MATLAB Function block in a new model. You can find the block in
the Simulink User-Defined Functions library.

2 Save your model as cgen_fi.mdl.

3 Double-click the MATLAB Function block in your model to open the MATLAB
Function Block Editor. Type or copy and paste the following MATLAB code,
including comments, into the Editor:

function [yout,zf] = dffirdemo(b, x, zi)
%codegen_fi doc model example
%Initialize the output signal yout and the final conditions zf
Ty = numerictype(1,12,8);
yout = fi(zeros(size(x)),'numerictype',Ty);
zf = zi;

% FIR filter code
for k=1:length(x);

% Update the states: z = [x(k);z(1:end-1)]
zf(:) = [x(k);zf(1:end-1)];
% Form the output: y(k) = b*z
yout(k) = b*zf;

end

% Plot the outputs only in simulation.
% This does not generate C code.
coder.extrinsic('figure');
coder.extrinsic('subplot');
coder.extrinsic('plot');
coder.extrinsic('title');
coder.extrinsic('grid');
figure;
subplot(211);plot(x); title('Noisy Signal');grid;
subplot(212);plot(yout); title('Filtered Signal');grid;

Prepare the Inputs
Define the filter coefficients b, noise x, and initial conditions zi by typing the
following code at the MATLAB command line:

8-86

MATLAB Function Block

b=fidemo.fi_fir_coefficients;
load mtlb
x = mtlb;
n = length(x);
noise = sin(2*pi*2140*(0:n-1)'./Fs);
x = x + noise;
zi = zeros(length(b),1);

Create the Model

1 Add blocks to your model to create the following system.

8-87

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

8-88

MATLAB Function Block

2 Set the block parameters in the model to the following values.

Block Parameter Value

Constant value b

Interpret vector
parameters as 1-D

Unselected

Sampling mode Sample based

Sample time inf

Mode Fixed point

Signedness Signed

Scaling Slope and bias

Word length 12

Slope 2^-12

Constant

Bias 0

Constant value x+noise

Interpret vector
parameters as 1-D

Unselected

Sampling mode Sample based

Sample time 1

Mode Fixed point

Signedness Signed

Scaling Slope and bias

Word length 12

Slope 2^-8

Constant1

Bias 0

8-89

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Block Parameter Value

Constant value zi

Interpret vector
parameters as 1-D

Unselected

Sampling mode Sample based

Sample time inf

Mode Fixed point

Signedness Signed

Scaling Slope and bias

Word length 12

Slope 2^-8

Constant2

Bias 0

Variable name yout

Limit data points to
last

inf

Decimation 1

Sample time -1

Save format Array

To Workspace

Log fixed-point data
as a fi object

Selected

8-90

MATLAB Function Block

Block Parameter Value

Variable name zf

Limit data points to
last

inf

Decimation 1

Sample time -1

Save format Array

To Workspace1

Log fixed-point data
as a fi object

Selected

Variable name noisyx

Limit data points to
last

inf

Decimation 1

Sample time -1

Save format Array

To Workspace2

Log fixed-point data
as a fi object

Selected

3 From the model menu, select Simulation > Configuration Parameters
and set the following parameters.

Parameter Value

Stop time 0

Type Fixed-step

Solver discrete (no continuous
states)

Click Apply to save your changes.

8-91

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Define the fimath Object Using the Model Explorer

1 Open the Model Explorer for the model.

2 Click the cgen_fi > MATLAB Function node in the Model Hierarchy
pane. The dialog box for the MATLAB Function block appears in the Dialog
pane of the Model Explorer.

3 Select Specify other for theMATLAB Function block fimath parameter
on the MATLAB Function block dialog box. You can then create the following
fimath object in the edit box:

fimath('RoundMode','Floor','OverflowMode','Wrap',...
'ProductMode','KeepLSB','ProductWordLength',32,...
'SumMode','KeepLSB','SumWordLength',32)

The fimath object you define here is associated with fixed-point inputs to
the MATLAB Function block as well as the fi object you construct within
the block.

By selecting Specify other for theMATLAB Function block fimath, you
ensure that your model always uses the fimath properties you specified.

Run the Simulation

1 Run the simulation by selecting your model and typing Ctrl+T. While the
simulation is running, information outputs to the MATLAB command line.
You can look at the plots of the noisy signal and the filtered signal.

2 Next, build embeddable C code for your model by selecting the model and
typing Ctrl+B. While the code is building, information outputs to the
MATLAB command line. A folder called coder_fi_grt_rtw is created in
your current working folder.

3 Navigate to coder_fi_grt_rtw > coder_fi.c. In this file, you can see the
code generated from your model. Search for the following comment in your
code:

/* coder_fi doc model example */

8-92

MATLAB Function Block

This search brings you to the beginning of the section of the code that your
MATLAB Function block generated.

8-93

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

8-94

9

Interoperability with Other
Products

• “Using fi Objects with Simulink” on page 9-2

• “Using fi Objects with DSP System Toolbox ” on page 9-7

• “Using fiaccel, MATLAB® Coder™, or Simulink to Generate Code” on page
9-12

9 Interoperability with Other Products

Using fi Objects with Simulink

In this section...

“Reading Fixed-Point Data from the Workspace” on page 9-2

“Writing Fixed-Point Data to the Workspace” on page 9-2

“Setting the Value and Data Type of Block Parameters” on page 9-6

“Logging Fixed-Point Signals” on page 9-6

“Accessing Fixed-Point Block Data During Simulation” on page 9-6

Reading Fixed-Point Data from the Workspace
You can read fixed-point data from the MATLAB workspace into a Simulink
model via the From Workspace block. To do so, the data must be in a
structure format with a fi object in the values field. In array format, the
From Workspace block only accepts real, double-precision data.

To read in fi data, the Interpolate data parameter of the From Workspace
block must not be selected, and the Form output after final data value by
parameter must be set to anything other than Extrapolation.

Writing Fixed-Point Data to the Workspace
You can write fixed-point output from a model to the MATLAB workspace via
the To Workspace block in either array or structure format. Fixed-point data
written by a To Workspace block to the workspace in structure format can be
read back into a Simulink model in structure format by a From Workspace
block.

Note To write fixed-point data to the MATLAB workspace as a fi object,
select the Log fixed-point data as a fi object check box on the To
Workspace block dialog. Otherwise, fixed-point data is converted to double
and written to the workspace as double.

9-2

Using fi Objects with Simulink®

For example, you can use the following code to create a structure in the
MATLAB workspace with a fi object in the values field. You can then use
the From Workspace block to bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])

a =

0 -0.5440
0.8415 0.4121
0.9093 0.9893
0.1411 0.6570

-0.7568 -0.2794
-0.9589 -0.9589
-0.2794 -0.7568
0.6570 0.1411
0.9893 0.9093
0.4121 0.8415

-0.5440 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

s.signals.values = a

s =

signals: [1x1 struct]

s.signals.dimensions = 2

s =

signals: [1x1 struct]

s.time = [0:10]'

9-3

9 Interoperability with Other Products

s =

signals: [1x1 struct]
time: [11x1 double]

The From Workspace block in the following model has the fi structure s in
the Data parameter.

Remember, to write fixed-point data to the MATLAB workspace as a fi
object, select the Log fixed-point data as a fi object check box on the To
Workspace block dialog. Otherwise, fixed-point data is converted to double
and written to the workspace as double.

In the model, the following parameters in the Solver pane of the
Configuration Parameters dialog have the indicated settings:

• Start time — 0.0

• Stop time — 10.0

• Type — Fixed-step

• Solver — Discrete (no continuous states)

• Fixed step size (fundamental sample time) — 1.0

9-4

Using fi Objects with Simulink®

The To Workspace block writes the result of the simulation to the MATLAB
workspace as a fi structure.

simout.signals.values

ans =

0 -8.7041
13.4634 6.5938
14.5488 15.8296
2.2578 10.5117

-12.1089 -4.4707
-15.3428 -15.3428
-4.4707 -12.1089
10.5117 2.2578
15.8296 14.5488

9-5

9 Interoperability with Other Products

6.5938 13.4634
-8.7041 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 25

Setting the Value and Data Type of Block Parameters
You can use Fixed-Point Toolbox expressions to specify the value and data
type of block parameters in Simulink. Refer to “Block Support for Data and
Numeric Signal Types” in the Simulink documentation for more information.

Logging Fixed-Point Signals
When fixed-point signals are logged to the MATLAB workspace via signal
logging, they are always logged as fi objects. To enable signal logging for a
signal, select the Log signal data option in the signal’s Signal Properties
dialog box. For more information, refer to “Exporting Signal Data Using
Signal Logging” in the Simulink documentation.

When you log signals from a referenced model or Stateflow® chart in your
model, the word lengths of fi objects may be larger than you expect. The word
lengths of fixed-point signals in referenced models and Stateflow charts are
logged as the next largest data storage container size.

Accessing Fixed-Point Block Data During Simulation
Simulink provides an application program interface (API) that enables
programmatic access to block data, such as block inputs and outputs,
parameters, states, and work vectors, while a simulation is running. You can
use this interface to develop MATLAB programs capable of accessing block
data while a simulation is running or to access the data from the MATLAB
command line. Fixed-point signal information is returned to you via this API
as fi objects. For more information on the API, refer to “Accessing Block Data
During Simulation” in the Simulink documentation.

9-6

Using fi Objects with DSP System Toolbox™

Using fi Objects with DSP System Toolbox

In this section...

“Reading Fixed-Point Signals from the Workspace” on page 9-7

“Writing Fixed-Point Signals to the Workspace” on page 9-7

“Using fi Objects with dfilt Objects” on page 9-11

Reading Fixed-Point Signals from the Workspace
You can read fixed-point data from the MATLAB workspace into a Simulink
model using the Signal From Workspace and Triggered Signal From
Workspace blocks from DSP System Toolbox™ software. Enter the name
of the defined fi variable in the Signal parameter of the Signal From
Workspace or Triggered Signal From Workspace block.

Writing Fixed-Point Signals to the Workspace
Fixed-point output from a model can be written to the MATLAB workspace
via the Signal To Workspace or Triggered To Workspace block from the
blockset. The fixed-point data is always written as a 2-D or 3-D array.

Note To write fixed-point data to the MATLAB workspace as a fi object,
select the Log fixed-point data as a fi object check box on the Signal To
Workspace or Triggered To Workspace block dialog. Otherwise, fixed-point
data is converted to double and written to the workspace as double.

9-7

9 Interoperability with Other Products

For example, you can use the following code to create a fi object in the
MATLAB workspace. You can then use the Signal From Workspace block to
bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])

a =

0 -0.5440
0.8415 0.4121
0.9093 0.9893
0.1411 0.6570

-0.7568 -0.2794
-0.9589 -0.9589
-0.2794 -0.7568
0.6570 0.1411
0.9893 0.9093
0.4121 0.8415

-0.5440 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

The Signal From Workspace block in the following model has these settings:

• Signal — a

• Sample time — 1

• Samples per frame — 2

• Form output after final data value by— Setting to zero

The following parameters in the Solver pane of the Configuration
Parameters dialog have these settings:

• Start time — 0.0

9-8

Using fi Objects with DSP System Toolbox™

• Stop time — 10.0

• Type — Fixed-step

• Solver — Discrete (no continuous states)

• Fixed step size (fundamental sample time) — 1.0

Remember, to write fixed-point data to the MATLAB workspace as a fi object,
select the Log fixed-point data as a fi object check box on the Signal To
Workspace block dialog. Otherwise, fixed-point data is converted to double
and written to the workspace as double.

The Signal To Workspace block writes the result of the simulation to the
MATLAB workspace as a fi object.

9-9

9 Interoperability with Other Products

yout =

(:,:,1) =

0.8415 -0.1319
-0.8415 -0.9561

(:,:,2) =

1.0504 1.6463
0.7682 0.3324

(:,:,3) =

-1.7157 -1.2383
0.2021 0.6795

(:,:,4) =

0.3776 -0.6157
-0.9364 -0.8979

(:,:,5) =

1.4015 1.7508
0.5772 0.0678

(:,:,6) =

-0.5440 0
-0.5440 0

9-10

Using fi Objects with DSP System Toolbox™

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 17

FractionLength: 15

Using fi Objects with dfilt Objects
When the Arithmetic property is set to 'fixed', you can use an existing fi
object as the input, states, or coefficients of a dfilt object in DSP System
Toolbox software. Also, fixed-point filters in the toolbox return fi objects as
outputs. Refer to the DSP System Toolbox software documentation for more
information.

9-11

9 Interoperability with Other Products

Using fiaccel, MATLAB Coder, or Simulink to Generate
Code

There are several ways to use Fixed-Point Toolbox software to generate code:

• The Fixed-Point Toolbox fiaccel function converts your fixed-point
MATLAB code to a MEX function and can greatly accelerate the execution
speed of your fixed-point algorithms.

• The MATLAB Coder codegen function automatically converts MATLAB
code to C/C++ code. Using the MATLAB Coder software allows you to
accelerate your MATLAB code that uses Fixed-Point Toolbox software. To
use the codegen function with Fixed-Point Toolbox software, you also need
to have a MATLAB Coder license. For more information, see “Generating C
Code from MATLAB Code at the Command Line” in the MATLAB Coder
documentation.

• The MATLAB Function block allows you to use MATLAB code in your
Simulink models that generate embeddable C/C++ code. To use the
MATLAB Function block with Fixed-Point Toolbox software, you also need
a Simulink license. For more information on the MATLAB Function block,
see “Using the MATLAB Function Block” in the Simulink documentation.

For more information on generating code with Fixed-Point Toolbox software,
see Chapter 8, “Code Acceleration and Code Generation from MATLAB for
Fixed-Point Algorithms”.

9-12

Index

IndexA
ANSI C

compared with fi objects 2-22
arithmetic

fixed-point 4-11
with [Slope Bias] signals 4-17

arithmetic operations
fixed-point 2-10

B
binary conversions 2-25

C
casts

fixed-point 2-19
Code generation

fixed-point 8-1
code generation from MATLAB

best practices
generate code generation report 8-49
preserving your code 8-52
separating test bench from function

code 8-52
specifying input properties 8-49
using build scripts 8-50
using file naming convention 8-52
using the MATLAB code analyzer 8-51

compiler options for MEX code
generation 8-30

controlling run-time checks 8-73
how to disable run-time checks 8-74
recommended options for fiaccel 8-49
using Code Analyzer 8-27
when to disable run-time checks 8-74

compiler options parameters
for MEX code generation fromMATLAB 8-30

compilers

supported for generating MEX functions
with fiaccel 8-16

complex multiplication
fixed-point 2-13

controlling run-time checks
code generation from MATLAB 8-73

D
data type override 5-12
demos 1-11
display preferences

setting 5-5
display settings 1-7
documentation

installing 1-3

F
fi objects

constructing 3-2
fiaccel

recommended options 8-49
supported compilers 8-16

fimath objects
properties

setting in the Model Explorer 4-9
setting properties in the Model Explorer 4-9

fimath objects 2-16
constructing 4-2

fipref objects
constructing 5-2

fixed-point arithmetic 4-11
fixed-point data

reading from workspace 9-2
writing to workspace 9-2

fixed-point data types
addition 2-12
arithmetic operations 2-10
casts 2-19

Index-1

Index

complex multiplication 2-13
modular arithmetic 2-10
multiplication 2-13
overflow handling 2-5
precision 2-5
range 2-5
rounding 2-6
saturation 2-5
scaling 2-4
subtraction 2-12
two’s complement 2-11
wrapping 2-5

fixed-point math 4-11
Fixed-Point MATLAB code 8-1
fixed-point run-time API 9-6
fixed-point signal logging 9-6

H
help

getting 1-5
how to disable run-time checks

code generation from MATLAB 8-74

I
installation

documentation 1-3
Fixed-Point Toolbox 1-3

interoperability
fi objects with DSP System Toolbox 9-7
fi objects with Filter Design Toolbox 9-11
fi objects with Simulink 9-2

L
licensing 1-4
logging

overflows and underflows 5-7
logging modes

setting 5-7

M
math

with [Slope Bias] signals 4-17
MATLAB Function block

using with Model Explorer and fixed-point
models 8-79

Model Explorer
setting embedded.fimath properties 4-9
setting embedded.numerictype

properties 6-9
using with fixed-point code generation for

MATLAB 8-79
modular arithmetic 2-10
multiplication

fixed-point 2-13

N
numerictype objects

properties
setting in the Model Explorer 6-9

setting properties in the Model Explorer 6-9
numerictype objects

constructing 6-2

O
one’s complement 2-11
overflow handling 2-5

compared with ANSI C 2-28
overflows

logging 5-7

P
padding 2-19
precision

fixed-point data types 2-5
property values

quantizer objects 7-3

Index-2

Index

Q
quantizer objects

constructing 7-2
property values 7-3

R
range

fixed-point data types 2-5
reading fixed-point data from workspace 9-2
rounding

fixed-point data types 2-6
run-time API

fixed-point data 9-6

S
saturation 2-5
scaling 2-4
signal logging

fixed-point 9-6
[Slope Bias] arithmetic 4-17

T
two’s complement 2-11

U
unary conversions 2-24
underflows

logging 5-7

W
when to disable run-time checks

code generation from MATLAB 8-74
wrapping

fixed-point data types 2-5
writing fixed-point data to workspace 9-2

Index-3

	toc
	Getting Started
	Product Description
	Key Features

	System Setup
	Installation
	Installing the Fixed-Point Toolbox Software
	Installing Online Documentation

	Required Products
	Related Products
	Licensing

	Getting Help
	Getting Help in This Document
	Getting Help at the MATLAB Command Line

	Display Settings
	Displaying the fimath Properties of fi Objects
	Hiding the fimath Properties of fi Objects
	Shortening the numerictype Display of fi Objects

	Demos

	Fixed-Point Concepts
	Fixed-Point Data Types
	Scaling
	Precision and Range
	Range
	Overflow Handling

	Precision
	Rounding Methods

	Arithmetic Operations
	Modulo Arithmetic
	Two's Complement
	Addition and Subtraction
	Multiplication
	Multiplication Data Types
	Multiplication with fimath

	Casts
	Casting from a Shorter Data Type to a Longer Data Type
	Casting from a Longer Data Type to a Shorter Data Type

	fi Objects Compared to C Integer Data Types
	Integer Data Types
	C Integer Data Types
	fi Integer Data Types

	Unary Conversions
	ANSI C Usual Unary Conversions
	fi Usual Unary Conversions

	Binary Conversions
	ANSI C Usual Binary Conversions
	fi Usual Binary Conversions

	Overflow Handling
	ANSI C Overflow Handling
	fi Overflow Handling

	Working with fi Objects
	Constructing fi Objects
	fi Object Syntaxes
	Examples of Constructing fi Objects
	Constructing a fi Object with Property Name/Property Value Pairs
	Constructing a fi Object Using a numerictype Object
	Constructing a fi Object Using a fimath Object
	Building fi Object Constructors in a GUI
	Determining Property Precedence
	Copying a fi Object

	Casting fi Objects
	Overwriting by Assignment
	Ways to Cast with MATLAB Software
	Casting by Subscripted Assignment
	Casting by Conversion Function
	Casting with the reinterpretcast Function

	fi Object Properties
	Data Properties
	fimath Properties
	numerictype Properties
	Setting fi Object Properties
	Setting Fixed-Point Properties at Object Creation
	Using Direct Property Referencing with fi

	fi Object Functions

	Working with fimath Objects
	Constructing fimath Objects
	fimath Object Syntaxes
	Building fimath Object Constructors in a GUI

	fimath Object Properties
	Math, Rounding, and Overflow Properties
	Setting fimath Object Properties
	Setting fimath Properties at Object Creation
	Using Direct Property Referencing with fimath
	Setting fimath Properties in the Model Explorer

	Using fimath Properties to Perform Fixed-Point Arithmetic
	fimath Rules for Fixed-Point Arithmetic
	Binary Operations
	Unary Operations
	Concatenation Operations
	fimath Object Operations: add, mpy, sub
	MATLAB Function Block Operations

	Binary-Point Arithmetic
	[Slope Bias] Arithmetic

	Using fimath to Specify Rounding and Overflow Modes
	Using fimath to Share Arithmetic Rules
	Using Default fimath Values to Share Arithmetic Rules
	Using Local fimath Objects to Share Arithmetic Rules

	Using fimath ProductMode and SumMode
	Example Setup
	FullPrecision
	KeepLSB
	KeepMSB
	SpecifyPrecision

	fimath Object Functions

	Working with fipref Objects
	Constructing fipref Objects
	fipref Object Properties
	Display, Data Type Override, and Logging Properties
	Setting fipref Object Properties
	Setting fipref Properties at Object Creation
	Using Direct Property Referencing with fipref

	Using fipref Objects to Set Display Preferences
	Using fipref Objects to Set Logging Preferences
	Logging Overflows and Underflows as Warnings
	Accessing Logged Information with Functions

	Using fipref Objects to Set Data Type Override Preferences
	Overriding the Data Type of fi Objects
	Using Data Type Override to Help Set Fixed-Point Scaling

	fipref Object Functions

	Working with numerictype Objects
	Constructing numerictype Objects
	numerictype Object Syntaxes
	Example: Constructing a numerictype Object with Property Name an
	Example: Copying a numerictype Object
	Example: Building numerictype Object Constructors in a GUI

	numerictype Object Properties
	Data Type and Scaling Properties
	Setting numerictype Object Properties
	Setting numerictype Properties at Object Creation
	Using Direct Property Referencing with numerictype Objects
	Setting numerictype Properties in the Model Explorer

	The numerictype Structure
	Valid Values for numerictype Structure Properties
	Properties That Affect the Slope
	Stored Integer Value and Real World Value

	Using numerictype Objects to Share Data Type and Scaling Setting
	Example 1
	Example 2

	numerictype Object Functions

	Working with quantizer Objects
	Constructing quantizer Objects
	quantizer Object Properties
	Quantizing Data with quantizer Objects
	Transformations for Quantized Data
	quantizer Object Functions

	Code Acceleration and Code Generation from MATLAB for Fixed-Poin
	What Are Code Acceleration and Code Generation from MATLAB?
	Requirements for Generating MEX Files from MATLAB Algorithms
	Functions Supported for Code Acceleration and Code Generation fr
	Workflow for Code Acceleration and Code Generation from MATLAB f
	Setting Up a Supported C Compiler to Generate MEX Functions
	Using fiaccel
	Speeding Up Fixed-Point Execution with the fiaccel Function
	Running fiaccel
	Generated Files and Locations
	Example: Comparing Run Times When Accelerating Different Algorit
	Trial 1: Best Performance
	Trial 2: Worst Performance
	Ratio of Times

	Using Data Type Override with fiaccel

	Setting Up File Infrastructure and Paths
	Compile Path Search Order
	When to Use the Code Generation Path
	Add Files to the Code Generation Path
	Adding Folders to Search Paths
	Naming Conventions
	Reserved Prefixes
	Reserved Keywords
	Conventions for Naming Generated files

	Preparing MATLAB Algorithms for Code Generation
	Debugging Strategies
	Detecting Errors at Design Time
	Detecting Errors at Compile Time

	Setting MEX Compilation Options
	Working with the MEX Compiler Configuration Object
	Modifying Compilation Options at the Command Line Using Dot Nota
	MEX Configuration Dialog Box Options
	See Also

	How fiaccel Resolves Conflicting Options

	Specifying Properties of Primary Function Inputs
	Why You Must Specify Input Properties
	Properties to Specify
	Default Property Values
	Supported Classes

	Rules for Specifying Properties of Primary Inputs
	Methods for Defining Properties of Primary Inputs
	Defining Input Properties by Example at the Command Line
	Command Line Option -args
	Rules for using the -args option
	Specifying Constant Inputs
	Specifying Variable-Size Inputs

	Best Practices for Accelerating Fixed-Point MATLAB Code
	Recommended Compilation Options for fiaccel
	Using Build Scripts
	Using the MATLAB Code Analyzer to Check Code Interactively at De
	Separating Your Test Bench from Your Function Code
	Preserving Your Code
	File Naming Conventions

	Working with Fixed-Point Code Generation Reports
	Generating the Code Generation Report
	Opening the Code Generation Report
	Viewing Your MATLAB Code
	Viewing Variables in the Variables Tab
	See Also

	Generating MEX Functions from MATLAB Code That Uses Global Data
	Workflow Overview
	Declaring Global Variables
	Defining Global Data
	Defining Global Data in the MATLAB Global Workspace
	Defining Global Data at the Command Line

	Synchronizing Global Data with MATLAB
	Why Synchronize Global Data?
	When to Synchronize Global Data
	How to Synchronize Global Data

	Limitations of Using Global Data

	Defining Input Properties Programmatically in the MATLAB File
	How to Use assert with fiaccel
	Specify Any Class
	Specify fi Class
	Specify Structure Class
	Specify Any Size
	Specify Scalar Size
	Specify Real Input
	Specify Complex Input
	Specify numerictype of Fixed-Point Input
	Specify fimath of Fixed-Point Input
	Specify Multiple Properties of Input

	Rules for Using assert Function
	Example: Specifying Properties of Primary Fixed-Point Inputs
	Example: Specifying Class and Size of Scalar Structure
	Example: Specifying Class and Size of Structure Array

	Controlling Run-Time Checks
	Types of Run-Time Checks
	When to Disable Run-Time Checks
	How to Disable Run-Time Checks

	MATLAB Coder
	MATLAB Function Block
	Composing a MATLAB Language Function in a Simulink Model
	Using the MATLAB Function Block with Data Type Override
	Using Fixed-Point Data Types with the MATLAB Function Block
	Specifying Fixed-Point Parameters in the Model Explorer
	Using fimath Objects in MATLAB Function Blocks
	Sharing Models with Fixed-Point MATLAB Function Blocks

	Example: Implementing a Fixed-Point Direct Form FIR Using the MA
	Program the MATLAB Function Block
	Prepare the Inputs
	Create the Model
	Define the fimath Object Using the Model Explorer
	Run the Simulation

	Interoperability with Other Products
	Using fi Objects with Simulink
	Reading Fixed-Point Data from the Workspace
	Writing Fixed-Point Data to the Workspace
	Setting the Value and Data Type of Block Parameters
	Logging Fixed-Point Signals
	Accessing Fixed-Point Block Data During Simulation

	Using fi Objects with DSP System Toolbox
	Reading Fixed-Point Signals from the Workspace
	Writing Fixed-Point Signals to the Workspace
	Using fi Objects with dfilt Objects

	Using fiaccel, MATLAB Coder, or Simulink to Generate Code

	Index

	tables
	Global Data Synchronization Options

